
Fast Volumetric Display of Natural Gaseous Phenomena

Stefan Roettger and Thomas Ertl

Visualization and Interactive Systems Group
University of Stuttgart

Abstract

Mesh simplification algorithms play an important role in com-
puter graphics. In particular, view-dependent simplification
methods are utilized widely to reduce the geometric complexity
of large outdoor scenes. The so called continuous level of de-
tail technique, for instance, is prevalent in the area of terrain
rendering. In this paper we apply the latter technique to the
more general volumetric case. We propose a volume rendering
algorithm, which constructs a hierarchical tetrahedral mesh
from regular volume data in a view-dependent fashion. The
popping effect which generally arises from view-dependent al-
gorithms is addressed by a new fast method for the smooth
interpolation of the mesh hierarchy. We demonstrate the per-
formance of our algorithm by displaying clouds in real-time.
Here, the application of the pre-integration technique allows
for a wide range of cloud appearance and guarantees accu-
rate compositing. Additionally, we show how to utilize our
algorithm for the accelerated display of ground fog in terrain
rendering scenarios.

CR Categories: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling, I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism.

Keywords: Volume Rendering, Continuous Level of De-
tail, Cell Projection, Pre-Integration, Gaseous Phenonema.

1 Introduction and Related Work

In general, the strategy to simplify a mesh in a view-dependent
fashion is suited well for the real-time display of large scenes.
This has been exemplified in the area of terrain rendering,
where the continuous level of detail technique (C-LOD) [25,
9, 34] is well established. This technique achieves high frame
rates by generating an approximate view-dependent triangu-
lation of the terrain. In order to minimize the total screen
space error of the approximation, small distant details are rep-
resented with fewer triangles than those which are nearby.

Despite the widespread use and the maturity of the C-
LOD technique it has not been applied to the more general
case of volume rendering [8] yet: Multi-resolution analysis
for the display of polygonal meshes has been introduced by
Rossignac et al. [36], and has been the subject of intense stud-
ies later on (see Xia et al. [49] as a starting point). General
multi-resolution analysis of volumetric meshes has been given
by Eck et al. [12] and more recently by Cignoni et al. [4].
Variants for the hierarchical visualization of regular volume

data have been discussed by Laur et al. [23], Zhou et al. [50],
and Schussman et al. [38]. A view-dependent simplifica-
tion method for irregular grids has been proposed by Mered-
ith et al. [29]. But still the efficient view-dependent simplifi-
cation of regular volume data is an active research field.

In this paper we present a general purpose volume render-
ing algorithm which is based on the continuous level of detail
idea. It maintains an octree to construct a view-dependent rep-
resentation of regular volume data. After decomposing each
leave node of the octree into tetrahedra these can be rendered
efficiently by using the projected tetrahedra (PT) algorithm of
Shirley and Tuchman [40].

A common property of view-dependent algorithms is the
occurrence of the so called popping artifacts: Small distant
details will suddenly pop up when approaching nearby. In the
case of a C-LOD terrain renderer the total screen space error
of the approximation can be pushed easily below the one pixel
boundary, so that the popping effect becomes invisible. In the
volumetric case, however, this approach is infeasible. As a
solution to this problem, the mesh hierarchy has to be interpo-
lated smoothly. In consideration of this fact, we present a new
fast mesh interpolation method, which we refer to as volumet-
ric morphing throughout the paper.

One of the classic volume rendering scenarios is the
medical visualization of computer tomography data [44].
While this scenario is suitable for hardware-accelerated multi-
resolution techniques [22, 43, 3], it has little potential with re-
spect to view-dependent rendering. Thus, we demonstrate our
octree based simplification algorithm by displaying gaseous
phenomena in real-time. In particular we give an application
example in the area of non-physically based weather visual-
ization and we show how to enrich outdoor scenes with volu-
metric ground fog.

2 Generating Continuous Levels of
Detail

In this section we describe how to adapt the C-LOD technique
previously known from terrain rendering [25, 9, 34] to the vol-
umetric case.

2.1 Hierarchical Volume Representation

Given a three-dimensional scalar field, which is defined by an
array with 2n �

1 (n � 0) grid points in each dimension, a hier-
archical volumetric mesh is constructed by building an octree
in a bottom-up fashion. Grids with a size other than 2n �

1
have to be padded or resampled. Each leave node of the octree



is decomposed into five tetrahedra. Since there exist two topo-
logically different decompositions, adjacent nodes of the same
level of detail have to be decomposed in an alternating fashion
to ensure a conforming mesh. In Figure 1 the orientation of
the tetrahedra is depicted for a coarse example hierarchy.

Figure 1: Hierarchical volume representation using an octree:
The example hierarchy consists of the root node with 8 chil-
dren (bright/orange), one of which has been refined into an-
other 8 children (dark/blue). Each leave node of the octree has
been decomposed into five tetrahedra in an alternating fashion.

2.2 View-Dependent Mesh Simplification

The key idea of a volumetric C-LOD algorithm can be de-
scribed as follows: In order to perform a view-dependent sim-
plification the octree has to be updated for each frame. During
a top-down traversal of the octree our approach calculates an
upper limit on the local screen space error of each node. If the
local error exceeds a predefined threshold the corresponding
node is split into eight children.

The error metric used to estimate the local screen space er-
ror is designed to meet the following criteria: A node should
be refined if the local simplification error is large. Also, small
distant nodes should be refined less likely than those which
are nearby. Let s be the edge length of each node, let d denote
the euclidean distance of the eye to the center of the node,
and let ∆ be the local simplification error of the node in object
space. With the previous definitions, we introduce the error
metric e as follows:

e � sC max
�
c∆ � 1 �

d
(1)

If the error metric e is greater than one, the node is refined,
else the refinement of the octree is stopped. The global ac-
curacy of the mesh can be controlled via the user definable
constant c. Higher values result in a finer mesh. Additionally,
the constant C defines a lower bound on the global accuracy.

In a preprocessing step the local error ∆ is computed. It
is defined to be the average of the scalar deviations ∆i at the
center of the node and the midpoints of the edges and faces.

The scalar deviations ∆i are equal to the difference of the
scalar value of each vertex and the interpolated scalar value
derived from the next coarser level of detail. For instance,
the deviation of the midpoint of an edge is equal to the ab-
solute scalar difference of that vertex and the average of the
two adjacent corner vertices (also compare Figure 2 where
∆midle f t ��� 12 � Stople f t

�
Sbottomle f t ��� Smidle f t � ).

2.3 Building a Conforming Mesh

For adjacent nodes, which do not belong to the same level of
detail (depicted by the orange and blue colors in Figure 1), the
interpolated scalar values at a T-vertex of the boundary face
do not match. One solution to ensure a conforming mesh is
to insert irregular tetrahedra into the coarser node. This tech-
nique is known as the red-green or regular-irregular refinement
method [1, 17]. But if we want to morph between two of the
large number of irregular configurations, the situation is get-
ting inscrutable complex. Furthermore, adjacent nodes must
not differ by more than one level for this method to work.
In order to circumvent these problems, we employ a differ-
ent approach: Rather than inserting irregular tetrahedra into
the coarser node, we manipulate the scalar values of the re-
fined node. To build a conforming mesh the scalar value at a
T-vertex is simply substituted by the interpolated value from
the coarser mesh of the adjacent neighbour node. A detailed
example is given in Section 3.

2.4 Hierarchical Error Propagation

Since we use a top-down simplification approach, at each node
only the local simplification error is known. However, in order
to minimize the total screen space error of the generated mesh,
we also need to know the local simplification error of all chil-
dren in advance. This can be accomplished by propagating the
local error from the children up to the parents of the octree.
In principle, the error propagation has to ensure that a node
is refined, if at least one child already fulfills the refinement
condition. In mathematical terms this can be written as:

echild � 1 � e � 1 or e � echild (2)

Substituting Equation 1 into Equation 2 yields

∆ � K∆child with K � d
2dchild 	 (3)

Now we determine an upper bound for K. Since we in-
troduced a minimum accuracy C which always guarantees re-
finement for d 
 sC we just have to consider the case d � sC.
On the one hand, the minimum possible value of K is 1

2 for
an infinite distant viewer. On the other hand, the maximum
possible value of K occurs for the minimum distance d � sC.
Then the minimum distance to the center of one of its chil-
dren is dchild � sC � 1

4 � 3s. Resubstituting these distances into
Equation 3 yields the following upper bound for K:

Kmax � C

2C � 1
2 � 3

�
C � � 3 � (4)

As a consequence, Formula 5 can be used to propagate the
local error ∆ from all eight children up to the parent nodes.



Starting with the leave nodes, all nodes which belong to the
same level of detail are processed in a row. For each node
the final propagated ∆-values are stored at the center vertex of
each node using a linear mapping with 16 bits of accuracy.

∆ : � max
�
∆ � Kmax � ∆child � (5)

In summary, the update of the view-dependent hierarchy is
performed by refining the octree, if and only if Equation 1 is
fulfilled. The simplicity of this approach is the basis for the
real-time performance of our algorithm. Another important
advantage is that volumetric morphing can be implemented
very efficiently as shown in Section 3.

3 Volumetric Morphing

In this section we describe a new fast method to morph the
view-dependent hierarchy. Volumetric morphing is manda-
tory, because otherwise the transition from one level of detail
to another could be observed easily.

For each frame, first the hierarchy is updated using the
view-dependent approach described in Section 2. During the
update the error metric e is mapped to the range

�
0 � 1 � accord-

ing to Equation 6 and stored at the center vertex of each node
with 8 bits of accuracy.

e � � min
�
max

�
e � 1 � 0 � � 1 � (6)

In a second octree traversal, the normalized error metric e �
is interpreted in the following way: A value of zero (e � 1)
means that the corresponding node has not yet been refined,
thus it can be decomposed into 5 tetrahedra and rendered as
described in Section 4. A value greater than zero and less than
one (e � � 1 � 2 � ) means that the node has been refined but still
none of its children. A value of one (e � 2) means that the
node and at least one of its children have been refined. As a
consequence, the time between the two subsequent refinement
events for e � � 0 and e � � 1 can be used to blend the scalar
values of the corresponding node as smooth as possible. Thus,
the parameter e � just serves as an interpolation factor to morph
recursively between the actual node and its children.

In contrast to a fixed blending time interval [20], the speed
of the interpolation is coupled to the error metric. This is a
much better strategy for volumetric morphing, since distant
details can be morphed much slower than those which are
nearby. In practice, we have found that the maximum instead
of the average of the deviations ∆i suppresses the popping ef-
fect more reliably. This is due to the fact that the subjective
observability of the interpolation is determined by the maxi-
mum and not by the average change of all vertices.

In the context of the described interpolation scheme a con-
forming mesh can be guaranteed simply by using the mini-
mum interpolation factor of all adjacent nodes which share the
interpolated vertex. If one of the adjacent nodes has not been
refined, the corresponding interpolation factor is assumed to
be zero.

In the following we illustrate the described interpolation
scheme using a two-dimensional example, which is depicted
in Figure 2. In general, only the scalar values of the non-
corner vertices of a node have to be interpolated using the

normalized error metric e � as the interpolation factor. In the
two-dimensional case, the non-corner vertices of a node are
the midpoints of the four edges (black dots) and the center
vertex (white dot). For each of those vertices the interpola-
tion is performed between the average scalar value of the two
adjacent corner vertices (small black crosses) and the actual
scalar value of the vertex. For the midpoint of the left edge of
the grey node in Figure 2, for example, the interpolated scalar
value S �midle f t is calculated as follows:

w � min
�
e � � e �n � (7)

S �midle f t � w
1
2

�
Stople f t

�
Sbottomle f t � � �

1 � w � Smidle f t(8)

Stopleft

Sbottomleft

Smidleft

en e

Figure 2: Two-dimensional morphing example.

In the three-dimensional case, the non-corner vertices of a
node are the centroid, the midpoints of the six faces, and the
midpoints of the eight edges. The scalar values of these ver-
tices are interpolated in analogy to the two-dimensional exam-
ple. The midpoints of the edges are shared among the actual
node and a maximum of three adjacent nodes of the same level
of detail. Thus, the minimum interpolation factor of these ver-
tices has to be calculated from the interpolation factors of the
actual and the three adjacent nodes. The midpoints of the faces
are shared among two nodes. Here, additional care must be
given to the calculation of the average scalar value of the cor-
ner vertices, since adjacent nodes are decomposed in an alter-
nating fashion. The average scalar value is therefore computed
from the appropriate two corner vertices of the tetrahedral de-
composition of the adjacent neighbour node. The centroid of a
node is located inside the center tetrahedron of the decompo-
sition. In this case the average scalar value is computed from
the four vertices of the center tetrahedron. Again, special care
must be given to the calculation of the average scalar value,
since the orientation of the center tetrahedron alters.

4 Cell Projection

Now that we have performed a view-dependent simplifica-
tion of a regular volume, the generated tetrahedra have to
be composed in a back to front fashion. We apply the cell-
projection technique, that is the PT algorithm of Shirley and
Tuchman [40, 42, 45, 47]. The original PT algorithm only
supports linear transfer functions which are not appropriate



for the display of gaseous phenomena as demonstrated in Sec-
tion 5. Therefore we also apply the pre-integration method
of Roettger et al. [35, 26, 14] which allows the use of arbi-
trary transfer functions by storing the ray integral in a three-
dimensional pre-integration table. Visibility sorting [48, 5] is
performed by reordering the traversal of the octree in a back
to front fashion.

4.1 Zero Opacity Test

In order to speed up the PT algorithm we discard transparent
tetrahedra by applying the so called Zero Opacity Test (ZOT).
While this test is obvious for linear transfer functions, it is
not as obvious for arbitrary transfer functions. Fortunately,
the three-dimensional pre-integration table contains all neces-
sary information to apply this test. First, the minimum and
maximum scalar values (denoted by Smin and Smax) of the
tested tetrahedra are computed. If the entry at position

��� �
n �

1 � Smin � ��� � n � 1 � Smax � � m � 1 � of the pre-integration table is
zero (using the notation of [35], n is the resolution along the S f
and Sb coordinates and m is the resolution along the l coordi-
nate), then we can discard the tested tetrahedra. By applying
the ZOT to each visited node of the octree, we can discard all
transparent tetrahedra with virtually no computational over-
head.

4.2 Hierarchical View Frustum Culling

Another common way to speed up rendering is view frustum
culling. During the rendering traversal of the octree each node
is tested against intersection with the view frustum. If a node
does not overlap with the view frustum, it is invisible and can
be discarded.

4.3 Volumetric Clipping

Since we want to allow the viewer to navigate freely inside the
volume, we face the following problem: If a tetrahedron in-
tersects the near clipping plane, the clipped two-dimensional
projection is not identical with the clipped volume of the tetra-
hedron. In order to display the tetrahedron correctly, it has
to be be clipped in a truly volumetric fashion. We distinguish
two different cases: Either the tetrahedron is cut into one tetra-
hedron and one prism or it is cut into two prisms. Therefore,
the visible part of the clipped tetrahedron is either a tetrahe-
dron or a prism. In the latter case the total number of rendered
tetrahedra is increased, since the prism has to be decomposed
into three tetrahedra. In comparison to the total number of
rendered tetrahedra, the number of clipped tetrahedra can be
considered to be fairly low. In our test scenes it turned out that
the fraction of additional tetrahedra was well below 10%.

5 Non-Physically Based Display of
Clouds

In the previous sections we have described a general pur-
pose volume rendering algorithm which is based on a view-
dependent simplification. In this section we demonstrate the

abilities of this approach by rendering gaseous phenomena, in
particular clouds and ground fog.

In general, we can think of a cloud as a three-dimensional
scalar function f � f

�
x � y � z � . The scalar values correspond

to the optical density of the medium. Due to the complex
anisotropic light scattering [2, 16, 11, 27, 41, 32, 21] inside
a cloud the photorealistic display is a time consuming task.
Impostors [37, 39] are currently the dominating technique
here [7, 13, 18].

But if we restrict ourselves to isotropic light scattering the
cloud intensities can be precomputed and we can apply the de-
scribed view-dependent simplification algorithm. As a result,
the clouds are modeled by two scalar fields, the scalar den-
sity f

�
x � y � z � and the scalar isotropic light intensity γ

�
x � y � z � .

The mesh simplification is driven by the maximum deviation
of both scalar fields.

This approach has the following advantages: Since we use
a truly volumetric representation there are no restrictions with
respect to cloud shape and appearance. As opposed to the
impostor method, the clouds are displayed without temporal
aliasing or perspective artifacts, even for view points inside
the clouds. This is guaranteed by the application of volumet-
ric morphing and clipping.

5.1 Modified PT Algorithm

In principal, the volume density optical model [46] used for
pre-integrated volume rendering presumes the transfer func-
tions κ (the chromaticity vector) and ρ (the scalar optical den-
sity) to depend both on the scalar density function f

�
x � y � z � .

But, since we want the optical density to depend on the den-
sity function f

�
x � y � z � and the chromaticity vector to depend

on the precomputed light intensities γ
�
x � y � z � , we circumvent

this restriction of the optical model by slightly modifying the
PT algorithm. For this purpose, we assume that ρ � Id. Then
we apply the pre-integration to the chromaticity vector κ �
κ
�
γ
�
x � y � z � � and the maximum optical density ρmax � fmax. To

introduce the dependency on f
�
x � y � z � we modulate the effec-

tive length l of each tetrahedral ray segment by the scalar opti-
cal density ρ � f

�
x � y � z � � according to the following equation:

l � � l
f
�
x � y � z �
fmax

(9)

5.2 Non-Physically Based Lighting

The previous approach requires a light scattering simu-
lation [27, 32, 21] to calculate the light intensity func-
tion γ

�
x � y � z � . Instead of changing physical simulation param-

eters we propose a non-physical approach which achieves the
desired look and feel of the clouds by a direct manipulation of
the transfer functions.

For this purpose, the chromaticity vector κ � κ
�
f
�
x � y � z � �

is defined to be an inverse color ramp and the optical den-
sity ρ � ρ

�
f
�
x � y � z � � is defined to be a linear function except

for very small densities where it is set to zero. This allows to
speed up rasterization by discarding nearly transparent areas
with the ZOT. The light intensities γ are calculated by stan-
dard ambient and diffuse lighting and are used to modulate the
effective ray segment length as described before. With respect



to the direction of the diffuse light this leads to high opacities
at the front and to low opacities at the back of the clouds. As
a consequence, the dark inside of each cloud shines through
the translucent back, but at the front bright colors still domi-
nate the appearance of the clouds. This approach effectively
mimics the natural look and feel of clouds without requiring a
physical lighting simulation.

6 Real-Time Display of Ground Fog

In this section we describe a variant of the view-dependent
simplification technique which is specifically suitable for the
real-time display of ground fog.

Each terrain renderer that is based on the C-LOD technique
creates a view-dependent triangulation of a height field. In or-
der to display volumetric ground fog, we introduce a second
height field (the ground fog map) which defines the height of
the fog layer above the ground. Each triangle that is gener-
ated by the C-LOD algorithm is treated as a base triangle onto
which a vertically aligned prism is stacked. The heights of the
three vertical edges of each prism are derived from the ground
fog map. To account for the additional map, the simplifica-
tion of the triangle mesh is driven by the deviations of both the
height field and the ground fog map. In order to suppress the
popping effect the upper boundary of the ground fog layer is
geomorphed in the same fashion as the surface of the terrain.

Each prism is decomposed into three tetrahedra in an alter-
nating fashion to ensure a conforming mesh. Prisms with zero
height can be discarded to speed up rasterization. The gen-
erated tetrahedra are rendered using the methods described in
Section 4 and 5. At the upper boundary of the fog layer the
optical density is set to zero which leads to a more realistic
appearance than using a constant fog density.

In the case that a specific C-LOD algorithm does not al-
low straight-forward back to front sorting of the tetrahedra,
we propose an emissive optical model [28] with exponential
saturation, which allows to omit the sorting stage: With the
average optical density τ and the length l of a ray segment the
exponentially saturated emission ε � 1 � eτl is stored in a 2D
texture similar to the approach of Stein et al [42]. In our case,
however, the blended intensity I � of a pixel is calculated from
the previous intensity I in the frame buffer using the following
blend function:

I � : � ε � �
1 � ε ��� I (10)

7 Results

Using the described non-physically based cloud and ground
fog rendering algorithms, Figures 3 and 4 show the city cen-
ter of Stuttgart with some cumulus clouds and ground fog in
the valleys. The scene was rendered in real-time with approx-
imately 26 frames per second on a PC equipped with a 1.2
GHz AMD Athlon and a NVIDIA GeForce3 graphics adaptor.
About 25% of the total rendering time was spent on terrain ren-
dering [34], 20% was spent for the display of the ground fog
and the remainder of 55% for the display of the clouds. The
latter were generated with 3D Perlin noise [33, 10], whereas

the ground fog map was painted by hand. The applied transfer
functions κ and ρ are depicted on the left side of Figure 3.

Figure 3: The city center of Stuttgart with clouds and ground
fog in the valleys. The applied transfer functions κ and ρ are
depicted on the left.

The size of the height field and the ground fog map
is 2049 � 2049, whereas the cumulus clouds are represented
by an 8 bit density field with a base size of 513 � 513 and a
height of 65 grid points. For the density field one byte is con-
sumed per grid point plus 16 bits for the deviations ∆ and one
byte for the interpolation parameter e � summing up to a total
of 48 MB in our example.

The size of the pre-integrated 3D texture is 64 � 64 � 128
which corresponds to 2 MB of graphics memory. Since only
the 3D texture has to be kept in graphics memory, the maxi-
mum cloud size is limited by main memory only.

For the display of the clouds the number of rendered tetra-
hedra was reduced from a total of 83 million to less than 10
thousand tetrahedra on the average. This corresponds to four
orders of magnitude reduction.

An analysis of the experimental results reveals two bottle-
necks. The main bottleneck is the projection of the tetrahedra.
This is due to the fact that for each single node of the octree
5 tetrahedra have to be decomposed into an average number
of 17.5 triangles. If the view point is entirely inside a cloud,
the algorithm is mostly fill-rate bound and the performance
drops to approximately 15 frames per second for a window
size of 512 � 384 pixels.

8 Discussion

In comparison to the impostor technique, our approach offers
the following advantages: Most important, a flight through the
clouds does not introduce temporal aliasing or perspective arti-
facts, since we use volumetric morphing and clipping. Further-
more, our general purpose volume rendering algorithm is able
to render arbitrary weather conditions including overcast sky
and storm clouds. Besides the shown 3D Perlin noise example
more sophisticated cloud simulation algorithms [31, 30, 15]



are compatible with our approach, which makes the algorithm
well suited for the purpose of weather visualization.

The use of a non-physically based rendering model some-
what limits the area of application, but in many cases the real-
time performance outweighs this restriction such as in inter-
active entertainment. Here the layered fog technique [24, 19]
is used commonly (i.e. in the DX8 game AquaNox [6]), but
has the disadvantage that the vertical fog boundaries are fixed.
With the described ground fog rendering algorithm we over-
come this restriction by explicitely defining the height of the
fog layer.

9 Conclusion

We have developed a general purpose volume rendering algo-
rithm. It is based on the continuous level of detail technique,
which approximates a three-dimensional scalar field in a view-
dependent fashion. The necessity to suppress the popping ef-
fect has been addressed by a new fast algorithm for volumet-
ric morphing. We have demonstrated the performance of our
algorithm by displaying clouds and ground fog in real-time.
Because of the truly volumetric representation of the clouds,
the algorithm is suited for real-time weather visualization and
the display of fast volumetric effects in games or VR environ-
ments.

References

[1] R. Bank, A. Sherman, and A. Weiser. Refinement Algo-
rithm and Data Structures for Regular Local Mesh Re-
finement. Scientific Computing, 44:3–17, 1983.

[2] Jim. F. Blinn. Light Reflection Functions for Simula-
tion of Clouds and Dusty Surfaces. Computer Graphics,
16(3):21–29, 1982.

[3] I. Boada, I. Navazo, and R. Scopigno. Multiresolution
Volume Visualization with a Texture-Based Octree. The
Visual Computer, pages 185–197, 2001.

[4] P. Cignoni, C. Costanza, C. Montani, C. Rocchini, and
R. Scopigno. Simplification of Tetrahedral Meshes with
Accurate Error Evaluation. In Proc. Visualization ’00,
pages 85–92. IEEE, 2000.

[5] J. Comba, J. T. Klosowski, N. L. Max, J. S. B. Mitchell,
C. T. Silva, and P. L. Williams. Fast Polyhedral Cell
Sorting for Interactive Rendering of Unstructured Grids.
Computer Graphics Forum (Proc. Eurographics ’99),
18(3):369–376, 1999.

[6] Massive Development. AquaNox Home Page,
www.aquanox.de, 2001.

[7] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and
T. Nishita. A Simple, Efficient Method for Realistic An-
imation of Clouds. In Proc. SIGGRAPH ’00, pages 19–
28. ACM, 2000.

[8] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume
Rendering. Computer Graphics, 22(4):65–74, 1988.

[9] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller,
Ch. Aldrich, and M. B. Mineev-Weinstein. ROAMing
Terrain: Real-Time Optimally Adapting Meshes. In
Proc. Visualization ’97, pages 81–88. IEEE, 1997.

[10] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and
S. Worley. Texturing & Modeling, A Procedural Ap-
proach. AP Professional, second edition, isbn 0-12-
228730-4 edition, 1998.

[11] D. Ebert and R. Parent. Rendering and Animation of
Gaseous Phenomena by Combining Fast Volume and
Scanline A-Buffer Techniques. Computer Graphics
(Proc. SIGGRAPH ’90), 24(4):357–366, 1990.

[12] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution Analysis of Arbi-
trary Meshes. In Proc. of SIGGRAPH ’95, pages 173–
182. ACM, 1995.

[13] P. Elinas and W. Stuerzlinger. Real-time Rendering of
3D Clouds. Journal of Graphics Tools, 5(4):33–45,
2000.

[14] K. Engel, M. Kraus, and Th. Ertl. High-Quality
Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading. In Eurographics Workshop
on Graphics Hardware ’01, pages 9–16. ACM SIG-
GRAPH, 2001.

[15] R. Fedkiw, J. Stam, and H. W. Jensen. Visual Simulation
of Smoke. In Proc. SIGGRAPH ’01, pages 15–22. ACM,
2001.

[16] Geoffrey Y. Gardner. Visual Simulation of Clouds. In
Proc. SIGGRAPH ’85, pages 297–303. ACM, 1985.

[17] R. Grosso, Ch. Lürig, and Th. Ertl. The Multilevel Finite
Element Method for Adaptive Mesh Optimization and
Visualization of Volume Data. In Proc. Visualization ’97,
pages 387–394. IEEE, 1997.

[18] M. J. Harris and A. Lastra. Real-Time Cloud Render-
ing. Computer Graphics Forum (Proc. Eurographics
’01), 20(3):76–84, 2001.

[19] W. Heidrich, R. Westermann, H.-P. Seidel, and Th. Ertl.
Applications of Pixel Textures in Visualization and Re-
alistic Image Synthesis. In Proc. ACM Symposium on
Interactive 3D Graphics, pages 127–134, 1999.

[20] Hugues Hoppe. Smooth View-Dependant Level-of-
Detail Control and its Application to Terrain Rendering.
In Proc. Visualization ’98, pages 35–42. IEEE, 1998.

[21] H. W. Jensen and P. H. Christensen. Efficient Simulation
of Light Transport in Scenes with Participating Media
Using Photon Maps. In Proc. SIGGRAPH ’98, pages
311–320. ACM, 1998.

[22] E. C. LaMar, B. Hamann, and K. I. Joy. Multiresolution
Techniques for Interactive Texture-Based Volume Visu-
alization. In Proc. Visualization ’99, pages 355–362.
IEEE, 1999.



[23] D. Laur and P. Hanrahan. Hierarchical Splatting: A Pro-
gressive Refinement Algorithm for Volume Rendering.
In Proc. SIGGRAPH ’91, pages 285–288, 1991.

[24] Justin Legakis. Fast Multi-Layer Fog. In ACM SIG-
GRAPH ’98 Conference Abstracts and Applications,
page 266, 1998.

[25] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges,
N. Faust, and G. Turner. Real-Time, Continuous Level of
Detail Rendering of Height Fields. In Proc. SIGGRAPH
’96, pages 109–118. ACM, 1996.

[26] N. L. Max, P. Hanrahan, and R. Crawfis. Area and Vol-
ume Coherence for Efficient Visualization of 3D Scalar
Functions. Computer Graphics (San Diego Workshop on
Volume Visualization), 24(5):27–33, 1990.

[27] Nelson L. Max. Efficient Light Propagation for Multi-
ple Anisotropic Volume Scattering. In 5th Workshop on
Rendering, pages 87–104. Eurographics, 1994.

[28] Nelson L. Max. Optical Models for Direct Volume Ren-
dering. IEEE Transactions on Visualization and Com-
puter Graphics, 1(2):99–108, 1995.

[29] J. Meredith and K. Ma. Multi-Resolution View-
Dependent Splat Based Volume Rendering of Large Ir-
regular Data. In Symposium on Large-Data Visualization
and Graphics ’01, pages 93–99, 2001.

[30] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita.
A Method for Modeling Clouds Based on Atmospheric
Fluid Dynamics. In Proc. Pacific Graphics ’01, pages
363–372, 2001.

[31] Fabrice Neyret. Qualitative Simulation of Cloud Forma-
tion and Evolution. In 8th Workshop on Computer An-
imation and Simulation (EGCAS ’97), pages 113–124,
Wien, 1997. Eurographics, Springer.

[32] T. Nishita, Y. Dobashi, and E. Nakamae. Display of
Clouds Taking into Account Multiple Anisotropic Scat-
tering and Sky Light. In Proc. SIGGRAPH ’96, pages
379–386. ACM, 1996.

[33] Ken Perlin. An Image Synthesizer. Computer Graphics
(Proc. SIGGRAPH ’85), 19(3):287–296, 1985.

[34] S. Roettger, W. Heidrich, Ph. Slusallek, and H.-P. Sei-
del. Real-Time Generation of Continuous Levels of De-
tail for Height Fields. In Proc. WSCG ’98, pages 315–
322. EG/IFIP, 1998.

[35] S. Roettger, M. Kraus, and Th. Ertl. Hardware-
Accelerated Volume and Isosurface Rendering Based on
Cell-Projection. In Proc. Visualization ’00, pages 109–
116. IEEE, 2000.

[36] J. Rossignac and P. Borrel. Multi-Resolution 3D Approx-
imations for Rendering, pages 455–465. Springer Ver-
lag, 1993.

[37] G. Schaufler. Per-Object Image Warping with Layered
Impostors. In Proc. 9th Workshop on Rendering ’98,
pages 145–156. Eurographics, 1998.

[38] G. Schussman and N. L. Max. Hierarchichal Perspec-
tive Volume Rendering Using Triangle Fans. In Proc.
TCVG Eurographics Workshop (VolumeGraphics ’01),
pages 309–320. IEEE/EG, 2001.

[39] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered
Depth Images. In Proc. SIGGRAPH ’98, pages 231–242.
ACM, 1998.

[40] P. Shirley and A. Tuchman. A Polygonal Approxima-
tion to Direct Scalar Volume Rendering. ACM Com-
puter Graphics (San Diego Workshop on Volume Visu-
alization), 24(5):63–70, 1990.

[41] J. Stam and E. Fiume. Depicting Fire and Other Gaseous
Phenomena Using Diffusion Processes. In Proc. SIG-
GRAPH ’95, pages 129–136. ACM, 1995.

[42] C. M. Stein, B. G. Becker, and N. L. Max. Sorting and
Hardware Assisted Rendering for Volume Visualization.
In Symposium on Volume Visualization ’94, pages 83–89.
IEEE, 1994.

[43] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman,
and Th. Ertl. Level-Of-Detail Volume Rendering via 3D
Textures. In Volume Visualization and Graphics Symp-
sium ’00, pages 7–13. IEEE, 2000.

[44] R. Westermann and Th. Ertl. Efficiently Using Graphics
Hardware in Volume Rendering Applications. In Com-
puter Graphics, Annual Conference Series, pages 169–
177. ACM, 1998.

[45] J. Wilhelms and A. van Gelder. A Coherent Projec-
tion Approach for Direct Volume Rendering. Computer
Graphics, 25(4):275–284, 1991.

[46] P. L. Williams and N. L. Max. A Volume Density Opti-
cal Model. In Computer Graphics (Workshop on Volume
Visualization ’92), pages 61–68. ACM, 1992.

[47] P. L. Williams, N. L. Max, and C. M. Stein. A
High Accuracy Volume Renderer for Unstructured Data.
Transactions on Visualization and Computer Graphics,
4(1):37–54, 1998.

[48] Peter L. Williams. Visibility Ordering Meshed Polyhe-
dra. ACM Transactions on Graphics, 11(2):103–126,
1992.

[49] J. C. Xia, J. El-Sana, and A. Varshney. Adaptive Real-
Time Level-of-Detail Based Rendering for Polygonal
Models. Trans. on Visualization and Computer Graph-
ics, 3(2):171–183, 1997.

[50] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution
Tetrahedral Framework for Visualizing Regular Volume
Data. In Proc. Visualization ’97, pages 135–142. IEEE,
1997.



Figure 4: Scenes from a flight above Stuttgart showing volumetric clouds and ground fog in real-time.


