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ABSTRACT
Unstructured tetrahedral grids are a common data
representation of three-dimensional scalar fields.
For convex unstructured meshes efficient rendering
methods are known. For concave or cyclic meshes,
however, a significant overhead is required to sort
the grid cells in back to front order. In this pa-
per we apply methods known from computational
geometry to transform concave into convex grids.
While this issue has been studied in theory it has
not yet been applied to the specific area of unstruc-
tured volume rendering. This is mainly due to the
complexity of the required geometrical operations.
We demonstrate that the convexification of concave
grids can be achieved by a combination of sim-
ple operations on triangle meshes. For convexified
meshes the experimental results show that the per-
formance penalty is only about 70% in compari-
son to approximately 300% for the fastest known
concave sorting algorithm. In order to achieve
high-quality visualizations we also adapt the pre-
integrated lighting technique to cell projection.

KEY WORDS
Volume rendering, unstructured grids, cell pro-
jection, visibility sorting, convexification, pre-
integration.

1 Motivation and Related Work

Considering the functional range of graphics li-
braries like OpenGL it is obvious that these libraries
have a rich tool set for manipulation and render-
ing of triangle meshes. On the other hand, tetrahe-
dral meshes, which are the three-dimensional coun-
terpart of triangle meshes, have very little support.
However, if a volumetric primitive were available
right out of the box, direct volume visualization of
unstructured grids would be straight forward. To
achieve this goal, King et al. [7] have proposed a
dedicated graphics hardware architecture, but un-
fortunately the architecture has not been realized
yet. Efficient sweep plane algorithms for unstruc-

tured data are well established [14, 3], but currently
the best suited method for dealing with volumetric
rendering primitives is the projected tetrahedra (PT)
algorithm of Shirley and Tuchman [13].

Recently, a competing hardware-accelerated ap-
proach has been presented by Weiler et al. [18].
They proposed a hardware-accelerated ray caster.
While this is a promising approach, it currently has
several drawbacks. First the available texture mem-
ory limits the maximum number of cells that can
be ray cast. Secondly, ray casting is a screen space
method as opposed to the PT algorithm, which is an
object-space method. Finally, the performance of
a hardware-accelerated ray caster may increase sig-
nificantly with future graphics cards but right now
its performance is in fact still lower than those of
actual optimized implementations of the PT algo-
rithm.

The PT algorithm requires the cells of the grid to
be sorted in a back to front fashion. This procedure
is known as visibility or depth sorting, which Wit-
tenbrink [22] points out, is the main limiting factor
of the PT algorithm. In the following we show how
to remedy this main deficiency of the PT algorithm.
By introducing an efficient visibility sorting algo-
rithm we gain a significant performance advantage.

A reader familiar with the topic of visibility sort-
ing may skip the introduction in the following sec-
tion and may jump directly to Section 3.

2 The PT Algorithm

The cell projection algorithm of Shirley and Tuch-
man is commonly called the projected tetrahedra
(PT) algorithm. It takes a scalar volume constructed
from tetrahedra as input, and composes the pro-
jected tetrahedral cells in a back to front fashion.
The footprint of each projected tetrahedron either
consists of three or four triangles centered around
the “thick vertex” of the tetrahedron as illustrated
in Figure 1.

The volumetric primitive of a tetrahedron is
transferred into a triangular representation that can
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Class 1a Class 1b Class 2

thick vertex

Figure 1: Classification of non-degenerated pro-
jected tetrahedra (top row) and the corresponding
decomposition (bottom row) according to Shirley
and Tuchman [13].

be rendered efficiently by the graphics hardware.
This explains the popularity of the algorithm, since
its performance directly relates to the number of
cells in the data set. In contrast to ray casting and
sweep plane methods the performance is almost in-
dependent of the size of the viewing window.

In recent years the original approach has been ex-
tended in numerous ways and is still under active
research. The first improvement was presented by
Stein et al. [16]. They used a more accurate expo-
nential interpolation of opacities inside the tetrahe-
dra instead of the linear approximation of the origi-
nal approach.

In principle, the colors and opacities assigned to
the tetrahedral decomposition correspond to the line
integral along the intersection of each viewing ray
with the tetrahedron. Using the volume density op-
tical model of Williams [19, 10], the complexity of
the line integral depends on the transfer functions of
the optical model.

The line integral can be solved analytically for
the special case of a linear transfer function. Later
this was extended for piecewise linear transfer func-
tions in the HIAC system [20]. For arbitrary transfer
functions, however, a numerical integration of the
transfer function is necessary. While the numerical
integration cannot be performed on the fly, the line
integral can be pre-computed and stored in a three-
dimensional lookup table. This approach is called
pre-integrated cell projection [12, 9].

Most recently, the increasing programmability
of the graphics hardware has lead to further im-
provements: The large size of the three-dimensional
pre-integration table prevented the use of a high-

resolution transfer function. This drawback was re-
solved by a polynomial reconstruction of the pre-
integration table in the pixel shader of modern
graphics accelerators [5]. Using this approach only
the coefficients for the Lagrangian polynomial ap-
proximation of the line integral need to be stored
instead of the memory consuming pre-integration
table itself.

Using the increasing capabilities of graphics ac-
celerators the decomposition of the tetrahedra into
triangles can also be performed in the vertex shader.
This is called hardware-accelerated cell projec-
tion [17, 23]. Although this approach does not yet
lead to a significant performance gain it is expected
that graphics accelerators of the next generation will
be much more efficient. Then the rendering speed
primarily does not depend on the performance of
the cell projection, but rather on the speed by which
the CPU is able to feed the GPU over the AGP or
PCI-Express bus.

Since the tetrahedra must be processed in a sorted
order, that is usually in a back to front fashion, the
overall system performance will be determined by
the efficiency of the visibility sorting algorithm and
the speed of the data transfer over the bus. Witten-
brink [22] points out that a read-write-read cycle of
the tetrahedra is mandatory for visibility sorting and
concludes that the memory access required for each
tetrahedron is the main limiting factor of the PT al-
gorithm.

Therefore, our prime goal in this paper is to de-
vise a visibility sorting algorithm that keeps pace
with the growing speed of the graphics accelerators.
For this purpose we first give a brief survey of exist-
ing visibility sorting methods and discuss their ad-
vantages and their limitations.

3 Visibility Sorting

By definition an unstructured tetrahedral grid is a
collection of tetrahedra, where it is assumed that the
intersection of two tetrahedra is either empty or a
common face. An unstructured grid is said to be
convex, if the faces which are not shared between
two tetrahedra form the convex hull of the data set.
This definition of a convex grid excludes both the
disconnectivity of the data set and the existence of
cavities.

The task of visibility sorting is closely related to
graph theory: for a convex grid the set of tetrahedral
pairs (A,B) with a common face define the edges of
a directed graph. The direction of each edge de-
termines the ’behind’ relationship, that is whether
or not cell A occludes cell B. The direction of the
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edge can be determined quickly by computing the
dot product of the viewing direction with the nor-
mal of the common face.

The directed graph imposes an ordering on the
set of tetrahedra which is said to be the visibility
or depth ordering. If the directed graph is acyclic
(DAG) then the ordering is total but it need not be
unique.

The well known MPVO algorithm of Williams et
al. [21] computes a visibility ordering for a convex
grid by traversing the DAG: whenever the algorithm
encounters a cell which does not occlude unvisited
neighbours it outputs the cell, otherwise it traverses
the graph in the direction of the edges. In this fash-
ion a depth sorted list of tetrahedra is constructed
for each specific point of view.

The cost of the MPVO algorithm is equal to the
cost of a depth-first or breadth-first graph traversal,
so that the run time complexity is linear in terms of
the number of cells.

4 Treatment of Cycles

It has to be mentioned that in the majority of cases
the sorting graph will be a DAG. However, a cycle
may occur quite easily. For example a gear with
slanted teeth may have a cycle: when looking along
the axis of the gear the teeth may occlude each other
in a cyclic way (see also Williams et al. [21]).

In the case of a cyclic graph any graph sorting
algorithm will fail, but we still have two options to
proceed. The first option is to cut the cycle apart
by selecting an appropriate cutting plane. This is a
difficult task even for simple cycles. A better option
is to use the MPVO-C algorithm of Kraus et al. [8].

This algorithm can handle arbitrary meshes in-
cluding cyclic meshes without the need of sorting,
but has quadratic run time in contrast to the linear
run time of the MPVO algorithm. The MPVO-C al-
gorithm is the three-dimensional analogue to Sny-
der and Lengyel’s algorithm of rendering cyclic tri-
angles.

Since the run time is quadratic we need to use
MPVO-C as a fall-back solution. In the case that
the visibility sorting algorithm has detected a cycle
we use MPVO-C to render the small group of cells
that cause the cycle. In combination with MPVO
the detection of a cycle and the identification of its
cells is straight forward using standard graph theory
and does not increase the run time complexity of the
MPVO algorithm (also compare [8]).

If a cycle is detected on the fly, the MPVO-C al-
gorithm is triggered for the set of cells that form
the cycle. Since these usually only make up for a

tiny fraction of the entire data set, the worst case
run time complexity is quadratic but the average run
time complexity is still linear.

5 Visibility Sorting of Concave Grids

Concave or disconnected grids cannot be handled
correctly by the MPVO algorithm since the behind
relations are not defined for the boundary faces.
This fact is illustrated in Figure 2 which shows a
gear rendered with correct ordering and a difference
image showing the artifacts produced by the MPVO
algorithm. A straight forward solution for this prob-
lem is simply to add the missing relations between
the boundary faces to the DAG.

Figure 2: Artifacts produced by incorrect visibility
ordering using the MPVO algorithm (correct image
on the left and difference image on the right).

Several algorithms are known which compute the
missing relations. The MPVO-NC algorithm is an
extension presented by Williams in his MPVO pa-
per. It uses a simple heuristic for the determina-
tion of the additional face relations. This heuristic
is easy to compute but in many cases is not able to
determine the correct set of relations. The X-MPVO
algorithm of Silva et al. [15] utilizes a sweep plane
parallel to the viewing plane to process the bound-
ary faces in depth sorted order and thus is able to
find the correct relations. Because of the expensive
sweep plane calculations this method was later im-
proved by Comba et al. [1] who introduced a BSP
tree for the efficient computation of the boundary
relations. This method is called BSP-XMPVO.

Another fast sorting algorithm for concave
meshes is the so called tangential distance or power
sort [6] which requires the mesh to fulfill the De-
launay criterion. Although the asymptotic run time
complexity is O(n logn) the average run time com-
plexity is O(n). For meshes which are not Delaunay
meshes, a new mesh can be constructed that fulfills
the Delaunay criterion. In three dimensions, how-
ever, this often requires the addition of new vertices
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to the data set, thus the mesh topology cannot be
preserved in general.

Note that all these sorting algorithms for concave
grids assume the mesh to be acyclic.

6 Convexification of Tetrahedral
Grids

An analysis of current visibility sorting algorithms
shows that BSP-XMPVO on the one hand produces
correct results for all types of meshes excluding
cyclic meshes. On the other hand it is signifi-
cantly slower than MPVO, which fails to sort con-
cave meshes. Cyclic meshes can be handled with
the MPVO-C method. An optimal graph sorting
algorithm would combine the advantages of these
methods.

Such an optimal sorting algorithm has already
been proposed by Peter Williams [21]. He sug-
gested to add imaginary cells to a concave data set
in order to transform it into a convex mesh, that is
to fill out the cavities of a data set with auxiliary
cells so that the extended mesh could be handled by
using the plain MPVO algorithm.

He also noted that “The implementation of the
preprocessing methods [...] for converting a non-
convex mesh into a convex mesh could take a very
significant amount of time; they are by no means
trivial. [...] Therefore, the MPVO algorithm for
nonconvex meshes, which has been found to be easy
to implement, may fill an immediate need despite its
shortcomings”.

Convexification algorithms are known from com-
putational geometry [4] and are well studied in the-
ory. But to our knowledge a convexification algo-
rithm that is easy to implement has not yet been
utilized for the purpose of depth sorting an unstruc-
tured grid.

In this paper we implement such a convexifica-
tion algorithm. The key idea is not to try to add
imaginary tetrahedra to the concave data set but
rather to subsequently break up the cavities into
sets of convex polyhedra and treat these polyhe-
dra as imaginary cells. For that purpose we com-
bine several standard algorithms dealing with trian-
gle meshes in a new and unique way. If the origi-
nal concave mesh also contains cycles we can use
the MPVO-C algorithm to take care of the cycles as
outlined in Section 4.

Since the run time of the MPVO algorithm is lin-
ear in terms of the number of cells, the performance
decreases with the number of auxiliary cells. In
practice the number of auxiliary polyhedra is small
in comparison to the total number of cells so that the

sorting performance is still linear on the average.
This is analyzed in more detail in Section 7.1. In
the following we give an algorithmic description of
our proposed tetrahedral convexification algorithm.

6.1 Basic Algorithm
Let S be a set of triangles that form the closed
boundary surface of a volume. We assume that the
normals of such a triangle set point outwards. Then
the volume is said to be concave if the opening an-
gle at the common edge of two triangles is less than
180◦. The volume is said to be connected if all tri-
angles can be reached by traveling along the edges
of the boundary. With these definitions the convex-
ification of an unstructured tetrahedral grid can be
described with the first step as follows:

1) S0 initially contains the boundary faces of the
unstructured grid

2) flip the normals of all triangles in S0
3) add the triangles of the convex hull of the grid

to S0 with all normals pointing outwards
4) remove all triangles from S0 that appear twice

Now S0 contains the boundary description of the
smallest exterior volume that needs to be added in
order to generate a convex mesh (compare left side
of Figure 3). This volume can be concave or even
disconnected. If S0 is empty, the tetrahedral mesh
is already convex and can be fed directly into the
MPVO/MPVO-C sorting algorithm. Alternatively,
we can replace Steps 3) and 4) by just adding the
faces of a bounding box (see right illustration in
Figure 3).

exterior
volume

tetrahedral
mesh

boundary
normals

Figure 3: Determining the exterior volume (de-
picted in light green). Left: minimal volume using
convex hull. Right: easy setup with bounding box.

As mentioned above, we do not try to fill the ex-
terior volume with tetrahedra but we rather break
it up into a set of n convex polyhedra Si, i = 1..n.
This is achieved by cutting away one concavity af-
ter another by using a combination of simple opera-
tions on triangle meshes. For each detected concav-
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ity the exterior volume is split into two sub-volumes
similar to binary space partition. This operation is
repeated until all sub-volumes have been split into
convex polyhedra:

n = 1; S1 = S0
repeat

if Si is disconnected for any i = 1..n
1) separate Si into a connected com-

ponent S′i and the remaining sub-
volume S′′i

else if Si is concave
2) choose triangle T ∈ Si so that the

plane P through T cuts Si into two
non-empty sub-volumes S′i and S′′i

3) move each triangle T ∈ Si to its cor-
responding sub-volume

4) triangulate the intersection of the
cutting plane P with Si and add the
resulting triangles to both S′i and S′′i

endif
n = n+1; Si = S′i; Sn = S′′i

until Si is convex and connected for i = 1..n

In Step 3) the triangles that intersect with the cut-
ting plane P have to be split and the resulting sub-
triangles have to be moved into the corresponding
sub-volume S′i or S′′i . Note that the tetrahedral mesh
is not split at all. Only a boundary face may be
split so that the DAG has multiple dependencies for
this face (also compare bottom right of Figure 5).
The intersection of the cutting plane P with a sub-
volume Si is a polygon which may be concave or
even disconnected. This polygon has to be triangu-
lated and added to both subsets S′i and S′′i , since oth-
erwise the sub-volumes would not be closed. Tri-
angles which lie in the cutting plane are a special
case and must be added to only one sub-volume. To
avoid numerical instabilities we move vertices with
a very small distance to P onto the cutting plane, so
that impossible cutting configurations cannot occur
due to floating point errors.

The described convexification algorithm does not
require complex volumetric operations but rather is
a combination of well known algorithms working
on polygons. In this way the goal of filling an ar-
bitrarily complex volume with tetrahedra is broken
down to a number of well analyzed operations on
triangle meshes. To our knowledge this specific ap-
proach is new in the research area of visibility sort-
ing (also compare recent research on convexifica-
tion [2]). In the worst case one iteration of the cut-
ting algorithm is needed for each face of the bound-

ary. For each cut the triangulation in Step 4) is
the most expensive operation with O(b logb) worst
case run time and b being the number of bound-
ary faces in the sub-volume. Therefore, the worst
case run time for the preprocessing of the tetrahe-
dral mesh is O(b2 logb). In practice, however, each
cut approximately halves the number of triangles in
a sub-volume. Thus, the average preprocessing time
is O(b log2 b).

6.2 Cutting Plane Selection

The run time of the MPVO algorithm for a convexi-
fied mesh directly relates to the number of auxiliary
cells. So our goal is to keep the number of generated
auxiliary cells as low as possible. This is achieved
by an appropriate selection of the cutting plane.

A first approach would be to select the cutting
plane which bisects each sub-volume. This is a
similar strategy to the construction of BSP trees in
computer games. Here the BSP performance relies
on equal sized leave nodes, for which the bisection
strategy works well. In our case, however, the size
of the nodes is not relevant, since the cells are imag-
inary and thus need not be rendered. Instead we
want to minimize the total number of auxiliary cells.

Figure 4: Selection of cutting plane. Left: bad BSP
strategy (no concavity cut away). Middle: elimi-
nation of one concavity. Right: elimination of two
concavities (but total number of auxiliary cells is
the same, since the bottom sub-volume is discon-
nected).

In principle, the cutting plane P should be cho-
sen so that the corresponding triangle T has at least
one neighbour with an opening angle less than 180◦.
This ensures that at least one concavity is cut away
from the sub-volume. Since there are usually many
triangles that fulfill this condition (see middle and
right case in Figure 4), we propose the following
selection criterion.

The criterion is based on the fundamental obser-
vation that the number of generated auxiliary cells
at each cutting step depends on the number of inter-
sections of the cutting plane with the sub-volume.
The more intersections the cutting plane has with
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the boundary of the sub-volume, the more auxiliary
cells are generated.

As an example, Figure 5 shows the convexifi-
cation of a simple two-dimensional object. After
checking possible cuts we could vote for the hor-
izontal cut on the top right of Figure 5 which has
4 intersections with the boundary. But then the
small cell depicted in bright red would be generated.
This cell is redundant, since it does not eliminate
any concavity. So we better vote for the vertical
cut which has only 2 intersections. The resulting
left sub-volume is convexified easily by one addi-
tional cut. The right sub-volume requires another
two cuts. We can choose either of three possible
cuts, since all have the same intersection count. Fi-
nally we have found a convexification consisting of
five auxiliary cells (bottom right of Figure 5).

In contrast to the two-dimensional example, the
mesh topology can be more complex in three di-
mensions. But cuts with few intersections with a
sub-volume also tend to produce few auxiliary cells.
This is not a strict property, since a seemingly bad
first cut may in some cases enable a better second
cut. The determination of the best possible cut is
a very expensive optimization problem. Therefore
it is infeasible in practice. The described selection
heuristic, however, works well in practice as shown
in Section 7.

In order to speed up the determination of a good
cut we just randomly select a small fixed number of
candidates and choose the best cut of this group. A
very similar strategy is used by the BSP-XMPVO
sorting algorithm for the construction of its BSP
tree.

Cut 3

Figure 5: 2D convexification example with result-
ing sorting graph. The light red balls depict cells
with multiple dependencies for a face. The gener-
ated auxiliary (imaginary) cells have been marked
light green.

Using the described convexification approach,
Figure 6 shows the convexified Blunt Fin data set
(S0 was derived from a bounding box). For this
data set a single auxiliary cell is generated. Only
this imaginary cell needs to be added to the original
data set to build a convex mesh. Similarly, the con-
vexification of the Oxygen Post, Tapered Cylinder
and Heat Sink data sets only requires the addition
of one auxiliary cell. Many other data sets encoun-
tered in practice cannot be handled as easy as this,
but the Blunt Fin example illustrates that automatic
convexification is straight forward in many cases.
Due to the single auxiliary cell the performance of
the MPVO for the convexified Blunt Fin is virtually
the same as the performance of the original MPVO-
NC algorithm.

Figure 6: In order to convexify the Blunt Fin data
set only one auxiliary cell needs to be added (de-
picted below the wire frame model).

Figure 7 illustrates the process of splitting the ex-
terior volume into convex polyhedra. The corners of
the surrounding bounding box are cut away until fi-
nally a large imaginary cylinder and imaginary con-
vex polyhedra between the teeth remain. Note that
the cylinder needs to be split because the quadri-
laterals on its surface are nonplanar and thus have
concavities.

Figure 7: Convexification example of a gear: exte-
rior volume (left), wire frame of unprocessed exte-
rior volume (middle), and exterior volume split into
convex polyhedra.
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7 Implementation

Our implementation of the MPVO algorithm has a
performance of about 2,1 million tetrahedra per sec-
ond on an an Intel Pentium 4 processor with 3,0
GHz.

At these clock speeds the sorting algorithm is
mainly memory bound (as pointed out by Witten-
brink). To reduce the traffic on the memory bus we
use an indexed data structure. Additionally, we also
utilize an indexed normal data structure which leads
to a performance increase of about 30-60% depend-
ing on the regularity of the data set (e.g. Blunt
Fin 59% and SPX 31%). Together with an ISSE
enhanced cell projection algorithm we achieve an
overall rendering performance of about 1,25 million
tetrahedra per second on an NVIDIA GeForce FX
5800 graphics accelerator.

The Blunt Fin data set in Figure 6 with 224874
tetrahedra renders at approximately 5.5 frames per
second. The performance for the SPX data set is
given in Table 8. The first row shows the results
of using the plain MPVO algorithm which is fastest
but does not render the SPX data set correctly. With
an increasing number of tested cutting planes the to-
tal number of auxiliary cells decreases significantly
and so does sorting time.

MPVO grid cells sorting total
12936 4.1 ms 10.8 ms

# cuts aux. cells sorting total
1 1562 10.2 ms
5 1115 7.8 ms
10 1000 7.4 ms
20 836 7.0 ms 14.4 ms

Figure 8: Sorting and rendering times for the SPX
data set with 12936 tetrahedra (Coolant flow simu-
lation in the Super PhoeniX reactor).

Taking the number of generated auxiliary cells
into account, the total number of cells is increased
by only 13% but sorting time increases by 70% and
total rendering time by 33%. The reason for this
over-proportional increase is the high irregularity
and the comparably large number of faces of aux-
iliary cells (7 faces per auxiliary cell on the average
for the SPX).

The latest hardware-accelerated cell projection
algorithms [17, 23] achieve approximately 550,000
tetrahedra per second on a NVIDIA GeForce4 ex-
cluding times for sorting. This corresponds to about
2 frames per second for the Blunt Fin data set using
a purely emissive optical model.

Our performance is on par with the latest
hardware-accelerated ray caster of Weiler et al [18].
However, our performance is almost independent of
the size of the viewing window. Additionally, our
proposed convexification algorithm is not limited to
the application area of direct volume rendering but
could also be used for a variety of tasks in finite el-
ement simulations, for example.

7.1 Performance Analysis

The BSP-XMPVO algorithm is the fastest known
sorting algorithm for concave meshes known today.
Our convexification method has a strong affinity to
BSP-XMPVO. While the latter uses a BSP tree on
the boundary faces to calculate the boundary edges
of the sorting graph, we use a cutting strategy to add
auxiliary cells at the boundary.

The main difference between the two methods is
not the different partitioning scheme. In fact, the
BSP tree is just another means of applying cutting
planes to sub-volumes. The main difference, how-
ever, is that the calculation of the boundary depen-
dencies is performed during convexification, which
is a preprocessing step. Therefore we do not need
to traverse a BSP tree whenever we encounter a
boundary face. In other words, the time consum-
ing BSP traversal is performed implicitly by build-
ing the adjacency graph from the convexified grid.
Since the BSP traversal accounts for a large frac-
tion of the sorting time, we achieve a considerable
speedup in comparison to BSP-XMPVO.

The penalty of BSP-XMPVO over MPVO(NC)
is in the range of 320-530% as stated in [1]. The
penalty of the convexification however is below
70% in our tests. In the past the MPVO algo-
rithm has proven to be the fastest solution for con-
vex meshes. Our experimental results show that the
MPVO algorithm is also the best option for convex-
ified concave meshes.

Due to the similarity of the BSP tree construc-
tion and the application of the cutting planes we can
deduce the asymptotic run time of our algorithm as
follows: the run time of BSP-XMPVO is O(bp+n),
where b is the number of boundary faces, n is the
number of grid cells, and p is the number of faces
that are cut by more than one face of the BSP. The
fact that b is usually below 5% of the total num-
ber of cells, and p is usually much smaller than b,
makes BSP-XMPVO linear in terms of n.

The same argument holds for convexification:
the asymptotic run time of the MPVO for the con-
vexified mesh is O(a + n) with a being the number
of auxiliary cells and n being the number of grid
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cells. The number of auxiliary cells is proportional
to the number of boundary faces b plus the num-
ber of auxiliary cells that are cut by another cutting
plane. Since the latter only account for a tiny frac-
tion of all cells, the run time in practice is essentially
linear in terms of n.

Another advantage of the presented convexifica-
tion algorithm is the fact that cyclic meshes can
be handled easily. The implicit storage of the de-
pendencies in a BSP-Tree makes it hard to detect
and manipulate cycles. A convexified sorting graph,
however, can be checked easily, since the boundary
dependencies are stored explicitely by means of the
auxiliary cells (compare also Kraus et al. [8]).

8 Tetrahedral Lighting

Once the tetrehadra are sorted they can be cell-
projected and rendered. In this section we describe
how to improve the visual appearance of the tetre-
hadra. As stated in the last section, the rendering
performance mainly depends on the sorting time
and the vertex performance. Therefore, there is no
performance penalty in using quiet long fragment
programs. We use this opportunity to introduce
high-quality tetrahedral lighting. In general, high-
quality rendering of unlit tetrahedra has been intro-
duced by Guthe et al. [5], but high-quality lighting
has not yet been applied in the area of unstructured
volume rendering.

We adapt the approach of Meissner et al. [11]
who introduced ambient, diffuse and specular light-
ing coefficients for direct pre-integrated volume
rendering of regular meshes. In order to implement
efficient lighting for unstructured meshes, we have
to take a closer look at the underlying scenario as
illustrated in Figure 9.

Sf Sb

l
Gf Gb

L

Figure 9: Each viewing ray within a tetrahedron
is defined by two sample points and two gradients.
The scalar values and gradients are interpolated lin-
early.

Since the scalar values and the gradients are in-
terpolated linearly within each tetrahedron, they are
also linear along each viewing ray. To allow for effi-
cient pre-integration (see [12] for an introduction to
pre-integrated cell-projection), we assume that the
intensity of the light varies linearly. Therefore the
light intensity I at position x of the ray segment can
be calculated as

I(x) = (x−→G f +(1− x)−→G b) ·
−→L

≈ x(−→G f ·
−→L )+(1− x)(−→G b ·

−→L ).

I(x) can now be split into I f (x) = x(−→G f ·
−→L ) = xI f

and Ib(x) = (1−x)(−→G b ·
−→L ) = (1−x)Ib. The ray in-

tegral C(x) and its approximation C′(x) for the dif-
fuse part of the emission are then given as

C(x) =

=
R x

0 e−
R t

0 ρ(S(u))duκ(S(t))ρ(S(t))I(t)dt

≈

R x
0 e−

R t
0 ρ(S(u))duκ(S(t))ρ(S(t))(I f (t)+ Ib(t))dt

= C′(x).

Using the linearity of the integral, the calculation
can be split into two integrals that do not depend on
the light intensity along the ray:

C′(x) =

=
R x

0 e−
R t

0 ρ(S(u))duκ(S(t))ρ(S(t))I f (t)dt+
R x

0 e−
R t

0 ρ(S(u))duκ(S(t))ρ(S(t))Ib(t)dt

= I f
R x

0 e−
R t

0 ρ(S(u))dutκ(S(t))ρ(S(t))dt+

Ib
R x

0 e−
R t

0 ρ(S(u))du(1− t)κ(S(t))ρ(S(t))dt.

With κ f (S(t)) = tκ(S(t)) and κb(S(t)) = (1 −

t)κ(S(t)), a pre-integration table is able not only
to represent the ambient, but also the diffuse part
of the emission along the ray segments. We need
three separate tables, i.e. an ambient and two dif-
fuse ones for κ f and κb, to reconstruct the color
along each ray segment. The lighting of the tetra-
hedra is equivalent to using Gouraud shading on a
per ray segment basis. To change the weighting of
ambient and diffuse lighting, we use different κ for
each of these lighting terms. Figure 10 shows the
improved visual perception of isosurfaces for the
Bucky Ball data set.

Meissner et al. [11] also showed how to imple-
ment a specular highlight for non-iso-surface-like
transfer functions by integrating a weighting coeffi-
cient w for the front and back gradients. In addition
their approximation also needs a weighting coeffi-
cient s for the intensity of the highlight. If we adapt
the same approach for tetrahedra, we end up with a
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Figure 10: Bucky Ball and convexified Blunt Fin
data set with per-ray lighting. With ambient only
(left) and diffuse lighting (right).

pre-integration table that contains 12 entries, 3 for
the integrated ambient color, 6 for the diffuse color,
1 for the integrated opacity and 2 for the specular
highlight. These 12 values can easily be stored in 3
RGBA textures.

Although this approach is almost a straight for-
ward adaption of [11] we propose the following
necessary modifications for unstructured grids: We
need to account for the fact that tetrahedra have
varying ray segment length l as opposed to texture
based pre-integrated volume rendering where l is
assumed to be constant. Since we do not want to re-
compute the three-dimensional pre-integration table
for different maximum ray segment lengths lmax, we
use l′ = 1− 2−l rather than l as a reparametriza-
tion of the third texture coordinate. In fact, this
reparametrization also improves accuracy. It is a
known fact that the emission becomes almost con-
stant for large l. Therefore we can represent this
parameter range with fewer sample points and use
more sample points for small values of l. To further
improve the accuracy of the integrated opacity, we
do not actually store the opacity but rather the inte-
grated optical density and reconstruct the opacity in
the pixel shader. Then the shader has to carry out
the following calculations:

1) Compute the perspectively interpolated scalar
values (S f and Sb), the gradients ( ~G f and ~Gb)
and the ray segment length l.

2) Calculate l′ = 1−2−l .
3) Lookup all three pre-integration tables at posi-

tion (S f , Sb, l′).

4) Perform diffuse lighting of front and back gra-
dient (I f = ~G f ·~L and Ib = ~Gb ·~L).

5) Calculate representative gradient for specular
highlight ~Gspec = w ~G f +(1−w) ~Gb .

6) Calculate highlight Ispec = s( ~Gspec ·~L)p.
7) Reconstruct opacity from integrated optical

density.
8) Add all colors and blend with frame buffer.

With this approach the specular highlight is repro-
duced correctly over multiple opaque iso-surfaces
within a single tetrahedron and is approximated ef-
ficiently for semi-transparent transfer functions as
seen in Figure 11. In order to further increase the
accuracy of both diffuse lighting and the specular
highlight, additional samples on each ray segment
can be used. The resulting image quickly converges
to the correct solution, so four samples per ray seg-
ment are usually sufficient. A larger number of sam-
ples significantly lowers the fill rate.

Figure 11: Specular highlight on opaque isosur-
faces within a single tetrahedron (left), approxi-
mation for a semi-transparent setting (middle) and
“correct” solution with four samples per ray seg-
ment (right).

9 Conclusions

We have described an efficient convexification al-
gorithm for the purpose of visibility sorting arbi-
trary unstructured volumetric grids. We proposed
an easy to implement convexification algorithm by
reducing the complex geometrical operations to a
sequence of operations on triangle meshes. We used
this method to transfer concave (and not necessar-
ily acyclic grids) into convex meshes which can be
sorted efficiently with the plain MPVO/MPVO-C
algorithm. As a result, our method is two to three
times faster than the fastest known sorting tech-
nique, the BSP-XMPVO algorithm. Our approach
is on par with the latest hardware-accelerated ray
casting algorithm but our performance is indepen-
dent of the window size. Finally, we also addressed
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the high-quality reconstruction of the ray integral
using the pre-integrated lighting technique.
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11 Additional Material

For the convenience of the reader, we provide a
movie which illustrates the convexification process
for two interleaving gears. In each frame the cut-
ting operation with the lowest intersection count is
performed. Imaginary cells outside the convex hull
of the data set are discarded.
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