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Abstract

We present two beneficial rendering extensions to the Projected
Tetrahedra (PT) algorithm by Shirley and Tuchman. These exten-
sions are compatible with any cell sorting technique, for example
the BSP-XMPVO sorting algorithm for unstructured meshes.

Using 3D texture mapping our first extension solves the long-
standing problem of hardware-accelerated but accurate rendering
of tetrahedral volume cells with arbitrary transfer functions.

By employing 2D texture mapping our second extension realizes
the hardware-accelerated rendering of multiple shaded isosurfaces
within the PT algorithm without reconstructing the isosurfaces.

Additionally, two methods are presented to combine projected
tetrahedral volumes with isosurfaces. The time complexity of all
our algorithms is linear in the number of tetrahedra and does neither
depend on the number of isosurfaces nor on the employed transfer
functions.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation, 1.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling, 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism.

Keywords: Wolume Rendering, Isosurfaces, Unstructured
Meshes, Cell Projection, Graphics Hardware, Texture Mapping,
Compositing.

1 Introduction

Ten years ago direct volume rendering of unstructured tetrahedral
meshes was dramatically accelerated by the Projected Tetrahedra
(PT) algorithm by Shirley and Tuchman [21], which is summarized
in Section 2. Although there are numerous competing approaches
to direct volume rendering of unstructured meshes, e.g. ray casting
[22], slicing [35], or sweep-plane algorithms [27], several aspects
of the PT algorithm are still subject of current research, e.g. the
sorting of tetrahedral cells (see [5] and references therein). Our
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extensions of the PT algorithm are restricted to the rendering of
projected tetrahedra.

The original PT algorithm approximates the opacity and color
between vertices linearly resulting in Mach bands as reported by
Max et al. in [14]. Stein et al. presented a solution for the correct in-
terpolation of opacities utilizing 2D texture mapping in [24], which
is also discussed in Section 2. However, this method is restricted to
linear transfer functions for the opacity and still interpolates color
components linearly ignoring the transfer functions for them inside
the tetrahedra.

Our first improvement of the PT algorithm allows us to render
both, opacity and color, accurately by exploiting 3D texture map-
ping. In particular this method allows us to employ arbitrary trans-
fer functions. The method and its application to a volume density
optical model is described in Section 3. In Section 4 we derive
an approximate rendering method based on 2D texture mapping,
which is supported by considerably more graphics systems and re-
quires less texture memory.

A second extension allows us to include the rendering of isosur-
faces in the PT algorithm using 2D texture mapping without extract-
ing a polygonal representation of the isosurfaces. There are numer-
ous algorithms to display isosurfaces efficiently. We will mention
a selection in Section 5. However, none of these algorithms takes
any particular advantage of the PT algorithm. Therefore, the costs
of displaying an isosurface were not reduced by a combination with
the PT algorithm in the past.

Our approach, however, reuses the visibility ordering and the de-
composition of the tetrahedral cells, which are an essential part of
every variant of the PT algorithm. There are many efficient algo-
rithms for the visibility ordering (see [5]), which all appear to be
compatible with our rendering extensions. By reusing the ordering
and decomposition of tetrahedra our method is capable of rendering
isosurfaces without constructing a polygonal representation. As it
is conceptually similar to the first pass of the multi-pass algorithm
for smoothly shaded isosurfaces by Westermann and Ertl [28], we
present a variant of this first pass in Section 6. We employ this idea
in the context of the PT algorithm and present a specialized single-
pass algorithm for flat-shaded isosurfaces using 2D texture mapping
in Section 7. Moreover, a two-pass algorithm for smoothly shaded
isosurfaces is described in Section 8.

Extensions for colored and multiple isosurfaces are discussed
in Section 9, while Section 10 presents two methods for mixing
isosurfaces with projected volume cells, either approximately but
smoothly using appropriate blending and texture mapping or more
accurately by modifying the texture maps.

We emphasize that the worst-case time complexities of all our
methods, i.e. volume rendering with arbitrary transfer functions,
rendering of multiple and smoothly shaded isosurfaces, and mixing
of isosurfaces with projected volume cells, are linear in the number
of tetrahedra and neither depend on the transfer functions nor on
the number of isosurfaces.



2 The PT Algorithm

The PT algorithm visualizes a scalar function f(X,y,z) defined over
a region of three-dimensional space by rendering partially transpar-
ent polygons, which can be processed very quickly by specialized
graphics hardware.

The PT algorithm can be summarized as follows (see also [21]):

1. Decompose the volume into tetrahedral cells. Scalar values
are defined at each vertex of the mesh. Inside each tetrahedral
cell, f(x,y,2) is assumed to be a linear combination of the
vertex values.

2. Sort the cells according to their visibility.

3. Classify each tetrahedron according to its projected profile
and decompose it into smaller triangles (see Figure 1).
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Figure 1: Classification of non-degenerate projected tetrahedra (top
row) and the corresponding decompositions (bottom row) accord-
ing to [21].

4. Find color and opacity values for the triangle vertices using
ray integration.

5. Render the triangles.

In the reminder of this section and in Sections 3 and 4 we will
only discuss methods to improve the last two points: ray integra-
tion and rendering of the decomposed triangles with emphasis on
hardware-accelerated rendering.

The original PT algorithm interpolates color and opacity linearly
between the triangle vertices. This, however, is an approximation
which leads to rendering artifacts as demonstrated in [14, 24].

In order to avoid these artifacts Stein et al. suggested in [24] to
use a 2D texture map with the texture coordinates being the aver-
aged extinction coefficient T and the thickness | of the projected
cell, while the texture map contains an a-component which is set
to o =1 —exp(—Tl). In between the vertices of each triangle the
texture coordinates and, therefore, T and | are interpolated linearly;
thus, this approach is restricted to a linearly varying extinction co-
efficient T, i.e. a linear transfer function T =1(f(x,y,2)). Moreover,
the color is still linearly interpolated between vertices. Williams
et al. extended these ideas to piecewise linear transfer functions in
[32].

3 PT with Accurate Opacity and Color

In this section a generalization of the method of Stein is presented
which works for color and opacity, and places no restrictions on

the transfer functions. We achieve these benefits by employing 3D
texture mapping.
Let us start by investigating the situation depicted in Figure 2.
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Figure 2: Intersecting a tetrahedral cell with a viewing ray. s¢ and
S, are the scalar values on the entry (front) and exit (back) face
respectively; | denotes the thickness of the cell for this ray.

As texture coordinates are interpolated linearly, we should only
use variables, the values of which vary linearly with screen coor-
dinates. We will restrict our considerations to orthographic projec-
tions. In this case | varies linearly for geometric reasons; s and
S, vary linearly because they are interpolated linearly between ver-
tices as mentioned above. Therefore, sf, S, and | should be the
three texture coordinates. Fortunately, all other values, e.g. color,
opacity, etc., can be calculated from |, s, and s,. Thus, we can set
up a 3D texture map which contains the color and opacity charac-
terizing the intersection of a ray and a cell in dependency of I, ss,
and s,.

For many applications the calculation of the texture map is a pre-
processing step and, therefore, not time-critical. Usually it includes
anumerical integration of a ray for each texel in the 3D texture map.
We sketch the procedure for the volume density optical model pro-
posed by Williams and Max [13, 31, 32] with a chromaticity vector
K =K(f(X,y,2)) and a scalar optical density p = p(f(Xx,y,z)), which
are the transfer functions of this model.

Assuming cells are processed back to front, the addition of the
projection of a cell changes an existing pixel color | to a new pixel
color I’ by the formula (compare Equation (4) in [31])
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with the abbreviation

S (X) = st +%((Sb*5f)~

RGBy3p denotes the color components (note that K is a vector),
and agp the opacity of an entry in the 3D texture map. RGBi3p
and a3p depend on the texture coordinates I, s¢, S, and the trans-
fer functions Kk and p. Thus, the texture map has to be updated
whenever the transfer functions are modified.

It is an intrinsic limitation of our method that k and p have to
depend on the same scalar field. However, we are not limited to
this optical model; for example the model of Wilhelms and Van
Gelder [13, 29, 32] could be implemented by simply replacing

K(s(t))p(s(t)) by a differential color vector E(s(t)) (or g(s (1))
in the notation of [13, 32]).



After the calculation of the texture map in a preprocessing step,
all tetrahedra are projected from back to front. Before rendering the
triangles of one projected tetrahedron, the three texture coordinates
are set for each vertex of the triangles. Then they are blended appro-
priately into the frame buffer. The blending operation corresponds
to

|/ = RGBth-i-(l—Gth) ><|7

and is done very efficiently by today’s graphics hardware.

We give a synthetic example of this rendering method in Fig-
ure 3. The scalar values at the vertices of the visualized tetrahedral
mesh are determined by the distance of each vertex to the surface of
a sphere. The transfer function of the opacity is 0 except for a small
interval, which results in the two partially opaque rings in Figure 3.

In summary our method allows us to exploit hardware-supported
3D texture mapping in order to render projected tetrahedra without
the need to do any time consuming calculations for each pixel. Our
approach is not as accurate as ray-casting algorithms or the high ac-
curacy (HIAC) volume rendering system described in [32] because
of limited texture memory and non-linear transformations in the
case of perspective projections. Especially limited texture memory
will limit the size of the 3D texture map resulting in a less accurate
resampling of the transfer functions. Within this limited accuracy,
however, arbitrary transfer functions may be used without affecting
the rendering times, whereas the performance of the HIAC system
depends crucially on the chosen transfer functions. In particular,
thin peaks are possible within our approach resulting in unshaded
isosurfaces as demonstrated in the appendix.

Figure 3: Visualization of a
synthetic data set with non-
linear transfer functions imple-
mented with a 3D texture map
of dimensions 64 x 64 x 64 (1
MB).

Figure 4. Same data set as in
Figure 3 but rendered using a
2D texture map of dimensions
256 x 256 (256 KB). (See Sec-
tion 4.)

4 A New Approximation for PT

As hardware-supported 3D texture mapping is only available on a
few graphics workstations, and the 3D texture maps that are em-
ployed in Section 3 need rather much texture memory, we will de-
scribe a new approximation to the rendering of projected tetrahedra
using 2D texture mapping, which interpolates the opacity linearly.
However, this method allows us to use arbitrary transfer functions,
while existing hardware-accelerated solutions are limited to linear
transfer functions within each cell (e.g. [24]).

The basic idea is to approximate the dependencies of the inte-
grals in Equation (1) on | by linear terms, and to implement these
terms by a modulation of the vertex colors. The remaining integrals
depend only on s; and s, and can thus be tabulated in a 2D texture
map.

The dependencies on | in Equation (1) become more explicit with
the variable substitutions t’ =t/l and u' = u/I:

- I/exp(—l/psl du)
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For | = 0 this equation reduces to I’ = 1. For given p, K, s¢ and
S We evaluate the integrals for another value | =T = const. and
extrapolate linearly in I. The optimal choice of | depends on the
particular application but setting I equal to the average cell thick-
ness has proven to be a good approximation. The 2D texture map
is defined by

RGBiop = T/()lexp (—T/(),p(sl(u’))du’)
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and is modulated by colors at the vertices with the RGBa compo-
nents set equal to (I1/1,1/1,1/1,1/1). In practice we are scaling these
colors by the maximum opacity value in the texture map in order
to avoid clamping for values | > |. This scaling is compensated
by multiplying the entries in the texture map with the reciprocal
value. The combined effect of texturing and blending with appro-
priate blending coefficients (e.g. in OpenGL GL_ONE for the source
blend factor and GL_ONE_-M NUS_SRC_ALPHA for the destination
blend factor) is

| |
IIZIZXRGBIZDJl‘(l—I:XGtZD) x 1,

which is our new approximation of Equation (1).

On the one hand, this approximation results in artifacts because
of the linear interpolation (see [24]), on the other hand, the use of
2D texture mapping enables us to utilize larger texture maps com-
pared with the 3D texture maps employed in Section 3 resulting in
an improved resampling of the transfer functions.

Figure 4 shows the synthetic example from Figure 3 using 2D
instead of 3D texture mapping. The linear approximation results
in slightly smaller opacities resulting in lighter colors, while the
improved resampling results in sharper edges of the structures gen-
erated by the transfer functions. The middle image in Figure 13
represents an example of a 2D texture map generated by Equation
2).

The following sections discuss an independent extension of the
PT algorithm capable of displaying smoothly shaded isosurfaces
without vertex interpolations. Additionally, two methods are pre-
sented to combine projected tetrahedra with opaque isosurfaces.

5 Prior Work about Isosurfaces

For an in-depth introduction into current research about isosurfaces
the reader is referred to [1]. Isosurfaces are an indispensable tool
in volume visualization, although direct volume rendering includes
much more information in one picture. However, isosurfaces are
preferred for many applications as they are usually more compre-
hensible. Thus, direct volume rendering techniques are often ex-
tended with isosurfaces in order to combine the advantages of both
techniques.



In their description of the PT algorithm [21] Shirley and Tuch-
man suggested to calculate isosurfaces based on a marching tetra-
hedra algorithm similar to the marching cubes algorithm [12, 34].
The combination of these algorithms makes it possible to render
isosurfaces with any degree of transparency as noted in [21].

However, research on marching cells algorithms concentrated on
reducing the number of cells tested for intersections with the isosur-
face [2, 3, 4, 11, 19, 20, 30] and on simplifying the polygonal mesh
representing the isosurface [7, 10, 15, 16, 18].

Instead of reducing the number of polygons point-based algo-
rithms for the extraction of isosurfaces [6, 9, 17, 23] do not produce
any polygons. Westermann’s multi-pass algorithm for shaded iso-
surfaces [28] also does not construct a polygonal representation of
the isosurface. As our algorithm is based on the same idea, we
present the common concept in Section 6 before discussing our al-
gorithm in Section 7.

6 A Hardware-Accelerated
Cells Algorithm

Marching

This section discusses a variant of the first pass of Westermann’s
algorithm for shaded isosurfaces in unstructured grids [28]. The
algorithm presented here sets all pixels of the silhouette of an in-
tersection of an isosurface with a tetrahedral cell. Figure 5a shows
the resulting silhouette, while Figures 5b and 5c¢ show intermediate
steps of the algorithm.
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Figure 5: The polygon of an isosurface (isovalue 0.5) within a tetra-
hedral cell (a) can be obtained by an XOR combination of the two
pictures (b) and (c). (b) shows the parts of the back faces of the
cell with scalar value less than 0.5. (c) is the analogue to (b) for the
front faces.

The first step is to render those parts of the back faces of the
cell where the interpolated scalar value is less than the isovalue (see
Figure 5b). Utilizing OpenGL this can be achieved by setting the a-
components of the vertices’ color to the scalar values and activating
an appropriate a-test. Then the front faces are rendered in exactly
the same way, i.e. again only those parts are rendered where the
interpolated scalar value is less than the isovalue (see Figure 5¢). By
combining both pictures with an exclusive-OR (XOR) operation the
correct set of pixels is obtained. Using OpenGL an XOR operation
can be realized with the help of a 1-bit stencil buffer by inverting
its contents whenever a pixel passes the a-test.

Note that the result is not sensitive to the order of the polygon
rendering, i.e. the back and front faces could be rendered in any or-
der. The result is also the same if the a-test is inverted for all faces,
i.e. if those parts of the polygons are rendered where the interpo-
lated scalar value is greater than the isovalue. Westermann’s origi-
nal algorithm differs in so far as the a-test is inverted for the back
faces only and the pictures are combined with an AND-operation.
However, this requires additional passes in order to generate both
faces of the isosurface.

In summary this algorithm requires the rendering of all front and
back faces in order to set the stencil buffer and to render either the
front or the back faces once more for flat-shaded isosurfaces. Thus,
for a tetrahedral cell five to seven triangles have to be rendered,

while a polygonal representation of the isosurface in a tetrahedron
needs only one or two triangles. Therefore, the advantage of inter-
polating the scalar data with the help of OpenGL hardware is more
than compensated by the need to render additional polygons.

The situation is, however, fundamentally different in the context
of the PT algorithm as will be discussed in the following section.

7 Flat-Shaded Isosurfaces

As mentioned in Section 2 the PT algorithm [21] triangulates the
projection of tetrahedra as shown in Figure 1. However, instead of
refering to a triangulation of the projected silhouette into triangles,
we can as well think of a decomposition of the original tetrahedron
into smaller tetrahedra, which are projected after the decomposi-
tion. The projections of these smaller tetrahedra are all of the same
kind: Two faces are degenerate and the other two faces are projected
onto the same (non-degenerate) triangle. This observation enables
us to reduce the algorithm presented in Section 6 to a single-pass
algorithm for these tetrahedra using 2D texture mapping.

As explained in Section 6 pixels are set if and only if the interpo-
lated scalar value of either the back or the front face is less than the
isovalue. As noted the back and front face are projected onto the
same triangle. Therefore, it is sufficient to render this triangle us-
ing a checkerboard-like, two-dimensional texture map as shown in
the right-hand column of Figure 6 with the two texture coordinates
corresponding to the interpolated scalar value of the back and front
face, respectively. (See the appendix for an alternative derivation of
this 2D texture map.)
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Figure 6: Projected tetrahedra (middle column) with flat-shaded
isosurfaces for isovalues 0.75 (top row), 0.5 (middle row), and 0.3
(bottom row). The left-hand column shows the same tetrahedra
slightly rotated with scalar data at the vertices. These values de-
fine the texture coordinates included in the pictures of the actual
projections in the middle column. The right-hand column shows
the corresponding texture maps including the triangles in the space
of texture coordinates.

The first texture coordinate corresponds to the scalar value on the
front face and the second texture coordinate to the scalar value on
the back face. As the scalar data are interpolated linearly, the texture



coordinates should also be interpolated linearly. Perspective correc-
tions of texture coordinates should, therefore, be disabled. Actual
values of texture coordinates have to be specified at the vertices of
the triangle and are determined by the scalar data defined at the
vertices of the projected tetrahedron. (See the left-hand column in
Figure 6 for the scalar data defined at the vertices of the tretrahedron
and the middle column for the resulting pairs of texture coordinates
at the vertices of the projected triangle.) If the scalar data are not in
the appropriate range for texture coordinates, the values have to be
scaled accordingly. However, this can be done in a preprocessing
step.

The texture itself has to determine the a-component, i.e. the
opacity, which has to be 1 for opaque isosurfaces whenever either
the first or the second texture coordinate is less than the isovalue,
and 0 otherwise (see the right-hand column of Figure 6). As this
pass does not allow any kind of smooth shading, we employ flat
shading, i.e. the RGB-components of the color of the triangle are
constant.

Unfortunately, edges of isosurface patches within triangles (see
the middle column of Figure 6 for some examples) will cause ren-
dering artifacts as there is no mechanism which aligns them exactly
to the corresponding edges in the projected tetrahedra in front or
behind. We can avoid gaps by slightly modifying the texture map,
effectively ‘thickening’ the isosurface. This eliminates artifacts for
opaque isosurfaces; for partially transparent isosurfaces, however,
this will visually enhance edges of the tetrahedral mesh by ren-
dering pixels twice. In fact these edges help to comprehend the
three-dimensional structure of flat-shaded isosurfaces. Nonethe-
less, removing these artifacts for partially transparent isosurfaces
is an open problem and requires additional efforts in the future.

8 Smoothly Shaded Isosurfaces

Our algorithm for smoothly shaded isosurfaces is again a variant
of the corresponding passes of Westermann’s algorithm for shaded
isosurfaces in unstructured grids [28]; however, there are several
crucial differences. For each triangle the steps of our algorithm are:

1. Render the shaded back face triangle restricted to the isosur-
face silhouette as discussed in Section 7.

2. Repeat the preceding step for the front face triangle.
3. Form the weighted sum of the two pictures.

The weights differ for each pixel as they depend on the relative
distances of the isosurface to the front and back face, respectively
(see Figure 7). For reasons which will become clear in the next
paragraph, let a denote the weight of a pixel of the front triangle.
According to Figure 7 the weight o is

Sso— S
St —S

for sf<Sgp<S OF Sf>S> S

with the isovalue S; Sf and s, were defined in Section 3. The
weight of a corresponding pixel on the back face triangle is 1 —a.
While weights for all pixels were calculated in software in [28], we
are calculating the weighted sum completely in hardware.

We still use the 2D texture map of Section 7 for the back face
triangle but employ a modified version of this texture map for the
front face triangle. This new texture map (see Figure 8 for an exam-
ple) is modulated with the weights a. As the original texture map
contains only opacity values 0 and 1, this modulated map in fact
stores the weights o = == for the front face triangle. (Remem-
ber that s; and s, are the texture coordinates and that the texture

map already depends on Sig.) Thus, the weights a in fact spec-
ify opacities. Using this texture map when rendering the front face
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Figure 7: Rendering smoothly shaded isosurfaces by shading
the back and front face triangle, and forming the weighted sum.
Weights are symbolized by gray scales and are determined by the
relative distances of the front and back faces to the isosurface given

by (Siso —Sb)/(St — ) and (Siso — St )/ (Sp — St ) respectively.

triangle and blending it appropriately onto the opaque back face
triangle generates, therefore, the correct weighted sum of both tri-
angles.
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Figure 8: A 2D texture map
used for a front face triangle;
black corresponds to opacity 1
(opaque), white to opacity 0
(transparent). It is a modula-
tion of the lower texture map in
Figure 6 with the weights a =

Ss'?jssob and s, = 0.3.

Figure 9: The correct combina-
tion of the texture maps from
Figure 6 into a single texture
map for multiple isosurfaces.
(See Section 9.)

Thus, our algorithm for smoothly shaded isosurfaces can be re-
formulated in two passes for each tetrahedron:

1. Render the shaded back face triangle restricted to the isosur-
face silhouette. (See Section 7.)

2. Blend the shaded front face triangle modulated with a texture
map containing the correct weights onto the back face trian-

gle.

Special care has to be taken with vertices from the decompo-
sition of projected tetrahedra, because they can result in artifacts
similar to those induced by hanging nodes. Therefore, the color of
a vertex inserted between two vertices of the mesh has to be equal to
the color generated by the graphics hardware interpolating between
these vertices.

The algorithm was used in Figure 10 to render several isosur-
faces of different colors as explained in the following section.



Figure 10: Several isosurfaces
extracted from the data set
shown in Figures 3 and 4.

Figure 11: Smooth combina-
tion of Figures 4 and 10. (See
Section 10.)

9 Colored and Multiple Isosurfaces

The techniques presented in Sections 7 and 8 can be extended to
colored and multiple isosurfaces. Coloring can be achieved by set-
ting the vertex colors to white and modulating them with colored
RGBua texture maps. The two faces of an isosurface can be colored
independently by choosing different colors for texels with s > s,
and s < s, respectively.

An example of a texture map for multiple isosurfaces is given
in Figure 9, which shows the combination of the (colored) texture
maps from Figure 6. The “visibility ordering’ is easy to understand:
For s < s, we view along the gradient of the scalar field, thus iso-
surfaces for smaller isovalues occlude those for greater isovalues,
and vice versa for s¢ > s,.

Assuming that all cells are rendered, the number of isosurfaces
n in the texture map does not affect the rendering time. For opaque
isosurfaces our method shares this feature with Westermann’s al-
gorithm for multiple isosurfaces [26], while ray-casting approaches
depend at least logarithmically on n. For partially transparent iso-
surfaces our method does still not depend on n while the depen-
dency of ray-casting approaches changes to n.

10 Mixing Isosurfaces with Projected Vol-
umes

It was claimed that rendering mixtures of opaque polygons and vol-
umetric data is straightforward, e.g. in [8]. This claim, however,
does not apply to any cell projecting approach including the PT
algorithm, since special attention has to be paid to partially oc-
cluded cells. In [32] Williams et al. suggest to slice each cell at
user-specified isovalues. The time complexity of this method, how-
ever, depends linearly on the number of isosurfaces. As we noted
in Section 9 the time complexity of our algorithm does not depend
on the number of isosurfaces; therefore, we propose two alternative
methods of mixing isosurfaces and projected tetrahedra, which are
more appropriate in this context.

The algorithm presented in Section 8 allows us to smoothly in-
clude projected tetrahedra by rendering them after the correspond-
ing back face triangle and before the front face triangle. This order
ensures that the projected volume is completely occluded where the
front face triangle is opaque, i.e. where the isosurface is in front of
the volume at the front face, and that the volume is not affected
where the front face is transparent, i.e. where the isosurface is be-
hind the volume at the back face. Figure 7 illustrates this correla-
tion: The relative thickness of the occluded part of the tetrahedron
(white) corresponds to the weight of the front face (left gray scale).

An example employing this method is given in Figure 11, which
mixes the isosurfaces of Figure 10 with the projected tetrahedra of
Figure 4. More realistic examples are presented in Figures 14, 16,
and 17. Figure 13 comprises the three 2D texture maps required to
render the NASA Bluntfin data set (Figure 14).

Although our approach avoids discontinuities, it is not com-
pletely accurate with respect to correct ray integration. Therefore,
we developed a more rigorous method. For opaque isosurfaces the
ray integration in Equation (2), respectively Equation (1) if 3D tex-
ture mapping is employed, has to be stopped as soon as one of the
isovalues is reached, i.e. for 5 (t) = Sg (see Figure 7). By ren-
dering the isosurfaces for each triangle first (either in one pass for
flat-shaded isosurfaces or two passes for smoothly shaded isosur-
faces), followed by the projected volume with the modified 2D or
3D texture map, we are able to generate an accurate picture.

An example of a 2D texture map generated this way is shown
in Figure 15 which corresponds to the middle texture in Figure 13.
The isosurfaces manifest themselves in transparent vertical stripes
which correspond to a scalar value s¢ on the front face of a tetra-
hedron slightly greater than one of the isovalues. In Figure 12 this
technique is used to visualize the opacity of the corresponding 3D
texture map of Section 3.

Both methods presented in this section can be generalized to par-
tially transparent isosurfaces.

Figure 12: Visualization of the opacity of the 3D texture map that
corresponds to the 2D texture map in Figure 15. The additional di-
mension parameterizes the length of the viewing ray within a tetra-
hedral cell. The isosurface represents opacity values of 0.25.

11 Results

With hardware-accelerated texture mapping the direct volume ren-
dering methods presented in Sections 3 and 4 are essentially as fast
as existing implementations of the PT algorithm. We emphasize
that the rendering times for our methods is not affected by the par-
ticular transfer functions employed.

Our extensions of the PT algorithm are hard to compare with
“non-PT” algorithms for direct volume rendering, e.g. approaches
based on slicing, because the most time critical step of the PT al-
gorithm is the sorting of the tetrahedra, which is not affected by the
extensions presented in this paper.

The algorithms for the rendering of isosurfaces described in Sec-
tions 7 and 8 depend on the correct sorting and decomposition of the
tetrahedral cells, while most of the algorithms mentioned in Sec-
tion 5 do not require any sorting or decomposition of tetrahedra.



Moreover, we did not attempt to reduce the number of cells tested
for intersections with the isosurface. Thus, most of the algorithms
mentioned in Section 5 will usually be faster than our current im-
plementation if used to render only a single isosurface. However,
as our worst-case rendering time does not depend on the number of
isosurfaces, our method will outrun most of the other algorithms if
the number of isosurfaces is large enough (see also Table 1).

Moreover, our rendering algorithms greatly benefit from a com-
bination with projected volume cells as described in Section 10 be-
cause the sorting and decomposition of tetrahedra can be reused in
this scenario. Thus, the inclusion of isosurfaces in a visualization
application based on the PT algorithm is almost for free. As the
rendering in our methods includes extraction and triangulation of
the isosurface, the rendering time (without sorting and decomposi-
tion of tetrahedra) should be compared to the sum of the extraction,
triangulation, and rendering times of other algorithms. Additional
efforts required by other algorithms for partially transparent isosur-
faces and mixing with volume cells should also be considered in a
fair comparison.

no. isosurfaces | no. cells | flat-shaded | smoothly shaded
1 14,729 0.09 sec. 0.22 sec.

2 25,361 0.20 sec. 0.41 sec.

10 25,361 0.20 sec. 0.41 sec.

Table 1: Rendering times (including ‘extraction’ and ‘triangula-
tion”) for isosurfaces from the NASA bluntfin data set. The number
of cells refers to the number of tetrahedra intersected by at least one
isosurface. Timings for the sorting and decomposition of tetrahedra
are not included as these steps are already done by the original PT
algorithm without our extensions.

The rendering times in Table 1 were obtained on an Octane MXE
with a MIPS R10K 250 MHz CPU. The isosurfaces were extracted
from the NASA bluntfin data set, which was converted into 187,395
tetrahedra. An image with three isosurfaces is depicted in Fig-
ure 14. Clearly the rendering times for flat-shaded isosurface de-
pend on the number of intersected tetrahedra (no double-counting)
instead of the number of isosurfaces. Smoothly shaded isosurfaces
require about twice as much time because the back and front faces
have to be rendered separately.

For a single, smoothly shaded isosurface our rendering time is
close to the 0.2 seconds reported by Westermann in [28]. The ren-
dering performance is comparable to the results of Wittenbrink in
[33].

12 Conclusion

We presented a hardware-accelerated but accurate way of render-
ing projected tetrahedra using 3D texture mapping. We expect this
method to become more attrative as 3D texture mapping hardware
becomes more widespread. As an alternative we derived a less ac-
curate method using 2D texture mapping. Both methods allow us to
employ arbitrary transfer functions, which is important for several
volume visualization techniques, e.g. the extraction of unshaded
isosurfaces with appropriate transfer functions.

A second extension to the PT alogrithm allows us to render mul-
tiple isosurfaces which may be partially transparent, colored, and/or
smoothly shaded. The generation of these isosurfaces does not re-
quire the explicit calculation of new vertices and needs only a frac-
tion of the computation time of the PT algorithm.

We have also described two methods to combine isosurfaces with
projected volume cells. In this case our approach to rendering iso-
surfaces rather than extracting them is much faster than traditional
techniques.

Furthermore, we expect the possibility of interactively rendering
dozens or hundreds of isosurfaces in combination with projected
volume cells to be useful for visualizing data sets which are less ef-
fectively visualized by direct volume rendering, e.g. the display of
multiple time surfaces in flow visualization as presented by \West-
ermann [26].

Finally, we would like to point out that our methods are espe-
cially suited for low-level graphics APIs; therefore, they would
greatly benefit from an implementation of the PT algorithm in hard-
ware. In particular the calculation of the vertices of the decom-
posed tetrahedra including the interpolation of gradients and scalar
values at the new vertices could be tremendously accelerated. Sup-
plemented with an API that also includes utility functions for the
generation of suitable texture maps such a hardware implementa-
tion of the PT algorithm would allow programmers to quickly de-
velop very fast and powerful volume visualization applications for
structured and unstructured meshes.
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Appendix

This appendix demonstrates the extraction of unshaded isosurfaces
with the technique presented in Section 3 by choosing an appror-
iate transfer function p. As a side effect the 2D texture maps of
Section 7 reveal themselves as special cases of the 3D texture map
of Section 3.

In order to extract the isosurface for an isovalue sig, We have
to set p(s) = 0 for s# s and “p(Sixp) = ©”. Formally, we set
p(s) =Cd(s— sis) With a large constant C and Dirac’s delta func-
tion d(x) (see [25]); multiple isosurfaces correspond to a sum of
delta functions. As K(Sig) is constant, we are only interested in the
value of a as defined in Equation (1):

I
1-a = exp (—/ p(s(t))dt)
0
' t
= (- [ Calsr+ {850 sl
I L
- exp(—/C‘ ! 6(t—|—$s° Sf)dt)
0 |S—Sf Sp — St
— exp (—C/H (Sso*sf> H (Sso*%))
Sp — St St —S
withC’ :C’ || and the Heaviside step function H (x) (see [25]).

So—S¢
Thus, for C — oo we obtain

o—H (Sso*sf> H (Sso*sb) 7
Sp— Sf St —S
which is independent of I. The dependency on s and s, is already
visualized in the texture maps shown in Figure 6. Obviously, the
2D texture maps used in Section 7 are in fact special cases of the

3D texture map of Section 3. However, the derivation presented in
Sections 6 and 7 appears to be more intuitive and comprehensible.
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Figure 13: These 2D texture maps of dimensions 256 x 256 were used to render the Bluntfin data set depicted below. The left
and right textures were employed to render the back and front face triangles, whereas the projected volume was generated by
the middle texture. The texels on the diagonal of this texture represent the transfer functions. Black pixels in these images
correspond to completely transparent texels.

~ B

Figure 14: Visualization of the Bluntfin data set with three isosurfaces Figure 15: 2D texture map correspond-

mixed with projected tetrahedra. ing to the middle texture of Figure 13
but with the integration stopped at the
isovalues.

Figure 16: A visualization of an MRI head scan. The iso- Figure 17: A CT scan of a bonsai: Leaves are visualized by
surface depicts soft tissue located in the cheeks and behind direct volume rendering, while the trunk and the branches
the eye balls. are shown by the brown isosurface.



