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Abstract
For volume rendering of regular grids the display of view-plane aligned slices has proven to yield both good quality
and performance. In this paper we demonstrate how to merge the most important extensions of the original 3D
slicing approach, namely the pre-integration technique, volumetric clipping, and advanced lighting. Our approach
allows the suppression of clipping artifacts and achieves high quality while offering the flexibility to explore volume
data sets interactively with arbitrary clip objects. We also outline how to utilize the proposed volumetric clipping
approach for the display of segmented data sets. Moreover, we increase the rendering quality by implementing
efficient over-sampling with the pixel shader of consumer graphics accelerators. We give prove that at least 4-
times over-sampling is needed to reconstruct the ray integral with sufficient accuracy even with pre-integration.
As an alternative to this brute-force over-sampling approach we propose a hardware-accelerated ray caster which
is able to perform over-sampling only where needed and which is able to gain additional speed by early ray
termination and space leaping.

CR Category: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism.

1. Introduction

The basic principle of volume rendering was described by
Kajiya10 as early as in 1984. Since then the availability
of graphics hardware has lead to the establishment of the
so-called 3D slicing method1, 3. The ray integral for each
pixel, which Kajiya reconstructed by ray tracing, is calcu-
lated with graphics hardware by rendering view-port aligned
slices through the volume. In this way the emission and ab-
sorption along each viewing ray through the volume is com-
puted by sampling and blending the volume for each numer-
ical integration step5. The main advantage is that the entire
task can be performed by the graphics hardware and is lim-
ited only by the fill rate of the graphics accelerator.

A volume is commonly given as a scalar function sam-
pled on a uniform grid. The main source for this kind of
volume representation are CT (Computer Tomography) or
MRI (Magnetic Resonance Imaging) scanners, which are
widely used in medical imaging. In order to associate opac-
ity and emission to the scalar values the volume density opti-
cal model of Williams et al.25, 13 is usually applied. It defines
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the opacity and the chromaticity vector to be functions of
the scalar values. When slicing a volume in a back-to-front
fashion, the opacity and chromaticity are stored in an one-
dimensional look-up table (often referred to as the transfer
function) which is used to transform the scalar value at each
rendered pixel into an RGBA vector. Then the ray integral
can be calculated by simple alpha-compositing the slices.

This basic principle of hardware-accelerated volume ren-
dering of regular grids has been extended in several ways to
increase the quality of the renderings. In the following we
give a list of the well established extensions and their pur-
poses:

• Ambient and Diffuse Lighting: The emission of the vol-
ume is attenuated by a lighting operation22, 24 to give more
visual clues regarding the curvature of details in the vol-
ume.

• Pre-Integration: The slicing of the volume results in the
so-called ring artifacts which are due to insufficient over-
sampling of high frequencies in the transfer function. This
issue is resolved by rendering slabs instead of slices. The
ray integral of the ray segments inside each slab is a func-
tion of the scalar values at the entry and exit points of
the ray, and the thickness of the slab (see also Figure 1).
By pre-integrating12, 19 the transfer function for each com-
bination of scalar values the ray integral can be looked
up easily for each rendered pixel using 2D dependent
texturing6.
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• Hardware-Accelerated Pre-Integration: Since pre-
integration involves a fair amount of numerical opera-
tions, a change of the transfer function leads to a de-
lay of the volume visualization while the 2D depen-
dent texture has to be recomputed. If self-attenuation is
neglected, interactive update rates of up to 10 Hertz6

are achieved for a transfer function with 256 entries.
However, this introduces artifacts in regions where the
transfer function is very opaque. A better solution is to
speed up the computation of the exact ray integral by
using graphics hardware18, 7. The quantization artifacts
that normally arise with an 8-bit frame buffer are over-
come by using the floating point render target of modern
graphics accelerators such as the ATI Radeon 97002 or
NVIDIA GeForce FX16. A 256-step hardware-accelerated
pre-integration with full floating point precision takes
about 50 milliseconds on the ATI Radeon 9700.

• Material Properties: Besides the pre-integration of the
transfer function, one can also pre-integrate material prop-
erties which describe the fraction of ambient, diffuse, and
specular lighting which has to be applied to each rendered
slab14.

• Volumetric Clipping: To explore the interior of a volume
conveniently volumetric clipping23 is used to cut off parts
of the volume which otherwise would hide important in-
formation. For that purpose the clip geometry is defined
by an iso-surface of an additional clip volume (which need
not necessarily be of the same size as the scalar volume).
During rendering the opacity of each pixel is set to zero in
the pixel shader if the corresponding clip value exceeds a
certain threshold.

In summary, the described extensions have led to high
quality volume rendering using the graphics hardware. How-
ever, the combination of the pre-integration technique with
volumetric clipping has been an unsolved problem. Hence
our first goal is to demonstrate the combination of these ad-
vanced techniques. To increase the accuracy even further, we
propose a hardware-accelerated ray caster which is able to
adapt the sampling frequency to the reconstruction error of
the ray integral.

2. Accurate Volumetric Clipping

In order to combine pre-integration with volumetric clipping
basically three steps are necessary. Let C f and Cb be the
scalar values of the clip volume at the entry and exit points of
the ray segment in the range [0,1]. We also assume that the
volume corresponding to clip values smaller than 0.5 should
be clipped away. If both parameters C f and Cb are above 0.5,
then the slab is completely visible and no special treatment
is necessary. Considering the case C f < 0.5 and Cb > 0.5 as
depicted in Figure 1, only the dark blue part of the volume
has to be rendered. In this case we first have to set the front
scalar value S f to the value S′f at entry point into the clipped
region. Thus we perform a look-up into the pre-integration

table with the parameters (S′f ,Sb) rather than with (S f ,Sb).
In the general case S f is replaced by S′f according to

r =

[

[0.5−C f ]

Cb −C f

]

, S′f = (1− r)S f + rSb .

The brackets denote clamping to the range [0,1]. For the
case C f > 0.5 and Cb < 0.5, the front scalar value need not
be adjusted, which is expressed by r = 0. The same holds for
the case C f > 0.5 and Cb > 0.5. Similarily, the parameter Sb
is replaced by S′b as follows:

g = 1−

[

[0.5−Cb]

C f −Cb

]

, S′b = (1−g)S f +gSb .

If both clip values are below 0.5, the ray segment is clipped
entirely, and thus the scalar values do not matter.

Sf Sb

l

Slab

Sf

Figure 1: Using slabs instead of slices for pre-integrated
volume rendering as introduced by Engel et al.6. The scalar
values at the entry and the exit point of the viewing ray are
denoted by S f and Sb, respectively. The thickness of the slab
is denoted by l. The dark blue region remains after volumet-
ric clipping. For this purpose, S f has to be replaced by S′f .

The second problem we have to care about is the reduced
length l′ of the clipped ray segment. The numerical pre-
integration depends on the three parameters S f , Sb and l (see
Figure 1). Using the optical model of Williams and Max25

with the chromaticity vector κ and the scalar optical den-
sity ρ, the ray integral for each ray segment is given as fol-
lows:

Sl(x) = S f +
x
l
(Sb −S f )

C(S f ,Sb, l) =
∫ l

0
e−

∫ t
0 ρ(Sl(u))duκ(Sl(t))ρ(Sl(t))dt

θ(S f ,Sb, l) = e−
∫ l

0 ρ(Sl(t))dt , α = 1−θ

Now we have to distinguish between two different types of
transfer functions. For a transfer function that defines a set of
isosurfaces the reduced ray segment length l ′ has no effect on
the integrated chromaticity C and the integrated opacity α.
For the other common case of a transfer function defined
by a lookup table the three-dimensional integration problem
can be reduced to two dimensions.
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The pre-integration is performed for the constant ray seg-
ment length l. Let the visible fraction of the slab be denoted
by b = l′/l. Then the transparency θ′ of the clipped ray seg-
ment is the pre-integrated transparency θ raised to the b-th
power because

∫ l′

0
ρ(S′l(t

′))dt ′ = b
∫ l

0
ρ(Sl(t))dt ,

θ′ = e−b
∫ l

0 ρ(Sl(t))dt =
(

e−
∫ l

0 ρ(Sl(t))dt
)b

= θb .

In practice however, a first order approximation is sufficient
if the thickness of the slabs is reasonable small.

If self-attenuation is neglected, the emission of the clipped
ray segment is given by C′ = bC. The computation of the
correct emission cannot be expressed in terms of a two-
dimensional pre-integration. For accurate results a three-
dimensional pre-integration table has to be used, but high
order polynomial approximations7 do a remarkably good job
to get rid of the huge three-dimensional pre-integration ta-
ble. Aside from that issue, the neglection of self-attenuation
is often a very good assumption in practice.

The third and last problem is the lighting of the slab. Sam-
pling the gradient at a single point results in severe ring
artifacts23. A better solution is to sample the gradient at the
entry and exit points and to adjust the gradients in the same
fashion as the scalar values. Then the final light intensity of
the slab is the average of both adjusted light intensities. The
operations involved here can be expressed as a linear inter-
polation of the gradients. We denote the interpolation factor
by a.

Instead of calculating the factors for the adjustment of the
scalar values, the emission, the opacity, and the gradients in
the pixel shader we pre-compute the factors for all combi-
nations of the clip values C f and Cb and store them in a 2D
dependent texture. The content of each R/G/B/A channel of
the dependent texture as depicted in Figure 2 corresponds to
the adjustment factors with the same name.

Figure 2: 2D dependent texture containing the adjust-
ment factors used for accurate volumetric clipping (R/G/B/A
channels are depicted from left to right).

Using the pixel shader version 2.015, both scalar values
can be adjusted by a single linear interpolation ("lrp" instruc-
tion). The entire pixel shader performing pre-integration,
ambient and diffuse lighting, and accurate volumetric clip-
ping is given in Appendix 8.2.

A comparison of the rendering quality between our ap-
proach and a naive application of the method by Weiskopf
et al.23 to pre-integration is depicted in Figure 3 (see Ap-
pendix 8.1 and 8.2 for the pixel shaders). A sphere has been
cut out of the Bucky Ball data set so that the holes of the car-
bon rings are visible as green spots. Both images have been
rendered with only 32 slices. Whereas the slices are clearly
visible on the left, our method reproduces the clipped vol-
ume accurately. This means that our method is also exact in
the viewing direction.

Figure 3: Comparison of volumetric clipping quality. Left:
Naive approach. Right: Accurate method.

The presented volumetric clipping algorithm can also
be extended to render segmented volumes21. In conjunc-
tion with the pre-integration technique this was an unsolved
problem as well. If each segment is defined as a clip volume,
this problem can be reduced to volumetric clipping.

For the case of two segmented volumes a clip volume is
set up to include one entire segment. For the second segment
we use an additional transfer function. For the part of the slab
which is clipped away we perform another dependent texture
lookup into the second pre-integration table and blend the
two partial slabs depending on their orientation. For each
additional segment this procedure has to be repeated.

3. Over-Sampling

In the last section we have described the combination of
the pre-integration technique with volumetric clipping to
improve the quality of volume visualizations. Nevertheless,
even the mentioned advanced techniques are no guarantee
for artifact-free renderings.

A fundamental assumption of volume rendering is that the
scalar values of the volume are interpolated tri-linearly. The
pre-integration technique has eliminated many of the render-
ing artifacts that arise from slicing the volume (compare top
right and bottom left image of Figure 4), but it assumes a
linear progression of the scalar values inside the slabs. This
assumption does not match the actual cubic behaviour of the
scalar values. Furthermore, the scalar function may have a
sharp bend if a voxel boundary is crossed inside a slab. This
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non-linear effect is amplified by lighting in regions with high
second derivatives.

Considering pre-integration alone the exact reconstruc-
tion of the ray integral is a four-dimensional problem (for
constant ray segment length l). Including the effect of light-
ing it can only be solved efficiently with over-sampling. The
top row of Figure 4 illustrates the artifacts that may occur
without over-sampling. Using 2-times over-sampling helps
a lot, but there is still a large difference when stepping up to
4-times over-sampling. Fortunately 8-times over-sampling
leads to insignificant improvements only, so that 4-times
over-sampling is already a good choice for highest quality
in practice.

Current graphics hardware allows to perform multiple
blending steps at once in the pixel shader. We have imple-
mented a pixel shader program that blends four slabs inter-
nally before it writes the result back into the frame buffer
(see Appendix 8.3). As a side effect, the four slabs (see Fig-
ure 1) are blended with the high internal precision of the
pixel shader.

For a window size of 5122 pixels the rendering time is be-
tween 1 and 1.7 seconds for this multi-stepped approach. Be-
cause of the increased cache coherence we achieve a speed
up of 70%-120% over the single-stepped version depend-
ing on the data set and viewing parameters. We conclude
that 2-times over-sampling comes almost for free when us-
ing multi-stepping. For very high quality requirements one
has to accept about twice the rendering time as normal.

4. Hardware-Accelerated Ray Casting

The previously discussed over-sampling approach sup-
presses artifacts caused by neglecting tri-linear interpola-
tion, the crossing of voxel boundaries, and the non-linear be-
haviour of lighting. While this brute-force approach is prac-
tically artifact-free, it does not exploit any spatial coherence
in the data set to increase the rendering performance. In com-
parison to brute-force over-sampling, a ray caster4, 11 is able
to adapt the sampling rate to the actual information in the
data set. This often leads to a drastically reduced number of
sample points.

Just like the flexibility of current graphics hardware al-
lows hardware-accelerated ray tracing17 it also allows to per-
form ray casting completely in hardware. In the following
we describe a smart hardware-accelerated ray caster which
applies an error-driven sampling scheme and additionally
performs early ray termination.

The pre-integration technique is based on a piece-wise lin-
ear approximation of the ray integral, thus all higher order
frequencies are neglected. In the optimal case one would
choose the step length such that the difference of the ex-
act ray integral and the linear approximation is lower than a
pre-defined threshold. But this solution is infeasible since it
requires the pre-integration of the entire data set.

Figure 4: A leave of the Bonsai20. The degradation of ren-
dering quality is displayed from top left to bottom right:
with pre-integration and 4-times over-sampling, with pre-
integration and 2-times over-sampling, with pre-integration
and without over-sampling, and neither with pre-integration
nor over-sampling. In the bottom right corner of each image
the zoom of a critical region is depicted which should show
a smooth color transition. Due to slicing artifacts in the bot-
tom right image artificial bands are visible. These remain
even with 2-times oversampling but almost disappear with
4-times oversampling.

Instead of solving the global problem we resort to solv-
ing the local problem, which basically requires the compu-
tation of the local approximation error of the scalar func-
tion and the visibility of this error, which is determined by
the transfer function. A natural strategy to compute the step
length should be based on at least the second derivative of the
scalar function and the pre-integrated emission and opacity
of the transfer function. This approach, which we call adap-
tive pre-integration, automatically subsumes the well-known
acceleration technique of space leaping5.

Conceptually, the process of ray casting can be divided in
three main tasks, which are the ray setup, the sampling of the
ray, and the numerical integration of the samples. In order to
exploit the massive parallelism of the graphics hardware, we
compute the integration for all rays in parallel. For each step
the front faces of the bounding box are rendered to process
all visible rays in a front-to-back fashion (see Figure 5).

The ray position is determined by a floating point render
target which contains the current ray parameter. For a given
sampling distance l the ray parameter is updated accordingly
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and written back into the floating point render target. Simul-
taneously, the integrated chromaticity and opacity are writ-
ten to additional floating point render targets (we use two
target for the RG and BG channels). A so-called importance
volume is used to extract the maximum isotropic sampling
distance as previously defined.

Bounding Box

Screen

already terminated

actual position

initial position

ray parameter

Figure 5: Ray casting scheme: All viewing rays are pro-
cessed simultaneously. For each integration step the pre-
integration technique is used. After each step the colors are
blended and the ray parameter corresponding to the next
sampling position is written back into alternating render tar-
gets (ping-pong rendering).

A ray is terminated if it either leaves the volume or if
the integrated opacity is approximately one. If a ray is ter-
minated we have to prevent further computation. For this
purpose, we use the Z-buffer since it is tested before any
pixel shader computation. This also includes texture reads. If
the ray ends we set the Z-buffer such that the corresponding
pixel is not processed anymore. This requires an additional
rendering pass.

To find out whether all rays have been terminated we
apply an asynchronous occlusion query. In total, we re-
quire 2n− 1 passes with n being the maximum number of
samples for the rays in the generated image. The first pass
is additionally setting up the initial ray parameters. In order
to allow re-implementation of the ray caster the pixel shader
2.0 code is included in the Appendices 8.4, 8.5, and 8.6.

In contrast to the brute-force slicing approach the total
number of samples depends on the transfer function and on
the coherence of the volume data. Also considering early ray
termination, the number of samples (see Figure 6) is always
less than for the slicing approach, but the same reconstruc-
tion quality is achieved. In addition to this, all computations
including blending are performed with full floating point
precision, so that artifacts due to frame buffer quantization
cannot occur (compare Figure 7).

5. Results

All performance measurements have been conducted on a
PC equipped with an ATI Radeon 9700 graphics accelera-

Figure 6: Number of sampling steps for different transfer
functions: On the left the original image is depicted and at
the center the corresponding number of sampling steps is
shown (White corresponds to 512 samples). On the right a
more opaque transfer function was chosen to illustrate the
impact of early ray termination.

Figure 7: Quality comparison between slicing with pre-
integration and 4-times over-sampling (left) and ray cast-
ing with full floating point accuracy and adaptive pre-
integration (right). On the left highly transparent areas are
neglected due to 8 bit frame buffer quantization.

tor. Figure 8 shows a Bonsai20 of size 2563 with and without
accurate volumetric clipping using 4-times over-sampling.
Rendering times are approximately 2 and 1.5 seconds, re-
spectively. The rendering times for the ray-casted bonsai
with opaque and semi-transparent transfer functions are be-
tween 1 and 3 seconds per frame (Figures 6 and 9). The
smaller NegHIP data set (Figure 7) with a size of 1283 vox-
els took 2.2 seconds with a semi-transparent transfer func-
tion and 0.7 seconds with an opaque transfer function.

In comparison to traditional slicing the quality of ray cast-
ing is always higher. Depending on the transfer function ray
casting may even be faster. By increasing the error threshold,
the rendering time can easily be reduced to 0.1 seconds per
frame. The artifacts introduced here are much less visible
than for the analogue case of reducing the number of slices.

With the upcoming of graphics accelerators such as the
NVIDIA GeForce FX, we expect the performance of a
hardware-accelerated ray caster to increase much more than
the performance of regular multi-stepped slicing. The rea-
sons are as follows: First, an additional pass is no longer
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Figure 8: Bonsai with and without volumetric clipping.

Figure 9: Hardware-accelerated ray casting.

needed for ray termination. Secondly, multiple steps can be
performed at once because of a higher maximum instruction
count. As buffer writes between the passes consume most of
the rendering time, this overhead can be reduced dramati-
cally with the NVIDIA GeForce FX.

The performance of a software ray caster11 is approxi-
mately the same as for our hardware-accelerated approach.
However, the software ray caster achieves its best perfor-
mance only without pre-integration, so the resulting quality
is not comparable.

6. Conclusion

We have combined volumetric clipping with the pre-
integration technique to achieve high-quality volume visu-
alizations. Since pre-integration does not completely solve
the problem of the reconstruction of the ray integral, we pre-
sented a hardware-accelerated ray caster. By adaptive pre-
integration of the viewing rays the reconstruction error can
be guaranteed to be below the threshold contrast sensitivity9.
The ray caster also applies pre-integration, space leaping and
early ray termination. In the future we plan to speed up the
ray caster by using hierarchical approaches8 that will allow
the visualization of very large data sets.
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8. Appendix

8.1. Naive Volumetric Clipping:
ps_2_0 // ps 2.0
dcl_volume s0 // 3D RGBA volume
dcl_2d s1 // 2D pre-integration table (RGBA)
dcl_volume s2 // 3D clip volume (Luminance)
dcl t0.xyz // texcoord front
dcl t1.xyz // texcoord back
dcl t2.xyz // normalized eye vector
def c0,0.5,1.0,2.0,0.0 // constant definitions
texld r0,t0,s0 // get front scalar value
texld r1,t1,s0 // get back scalar value
texld r4,t0,s2 // get front clip value
mov r2.r,r0.a // move front scalar value to r2.r
mov r2.g,r1.a // move back scalar value to r2.g
texld r2,r2,s1 // pre-integration lookup
mul r2.rgb,r2,r2.a // post-multiply alpha
mad r0.rgb,c0.b,r0,-c0.g // expand normal
dp3_sat r3,t2,r0 // calculate light intensity
mul r2.rgb,r2,r3 // multiply emission with intensity
add r4.r,r4.r,-c0.r // depending on comparison with 0.5..
cmp r2.a,r4.r,r2.a,c0.a // ..set opacity to zero
mov oC0,r2 // move to output register

8.2. Accurate Volumetric Clipping:
ps_2_0 // ps 2.0
dcl_volume s0 // 3D volume
dcl_2d s1 // 2D pre-integration table
dcl_volume s2 // 3D clip volume
dcl_2d s3 // clip coefficient table (RGBA)
dcl t0.xyz // texcoord front
dcl t1.xyz // texcoord back
dcl t2.xyz // normalized eye vector
def c0,0.5,1.0,2.0,0.0 // constant definitions
texld r0,t0,s0 // get front scalar value
texld r1,t1,s0 // get back scalar value
texld r4,t0,s2 // get front clip value
texld r5,t1,s2 // get back clip value
mov r4.g,r5.r // move back clip value to r4.g
texld r4,r4,s3 // get clip coefficients
lrp r2,r4,r1.a,r0.a // adjust scalar values
texld r2,r2,s1 // pre-integration lookup
mul r2.rgb,r2,r2.a // post-multiply alpha
mad r0.rgb,c0.b,r0,-c0.g // expand front normal
dp3_sat r3,t2,r0 // calculate front light intensity
mad r1.rgb,c0.b,r1,-c0.g // expand back normal
dp3_sat r3.g,t2,r1 // calculate back light intensity
add_sat r3,c0.r,r3 // bias light intensities
lrp r5.r,r4.a,r3.g,r3.r // adjust light intensities
mul r2.rgb,r2,r5.r // multiply emission with intensity
mul r2,r2,r4.b // attenuate emission and opacity
mov oC0,r2 // move to output register

8.3. 4Steps@Once:
ps_2_0 // ps 2.0
dcl_volume s0 // 3D volume
dcl_2d s1 // 2D pre-integration table
dcl t0.xyz // texcoord front
dcl t1.xyz // texcoord back
dcl t2.xyz // normalized eye vector
dcl t3.xyz // second texcoord front
dcl t4.xyz // second texcoord back
dcl t5.xyz // central texcoord
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def c0,0.5,1.0,2.0,0.0 // constant definitions
texld r0,t0,s0 // get front scalar value
texld r1,t1,s0 // get back scalar value
texld r3,t3,s0 // get second front scalar value
texld r4,t4,s0 // get second back scalar value
texld r6,t5,s0 // get central scalar value
mad r0.rgb,c0.b,r0,-c0.g // expand front normal
dp3_sat r0.r,t2,r0 // calculate front light intensity
add_sat r0.r,c0.r,r0.r // bias light intensity
mad r3.rgb,c0.b,r3,-c0.g // expand second front normal
dp3_sat r3.r,t2,r3 // calculate front light intensity
add_sat r3.r,c0.r,r3.r // bias light intensity
mad r6.rgb,c0.b,r6,-c0.g // expand central normal
dp3_sat r6.r,t2,r6 // calculate front light intensity
add_sat r6.r,c0.r,r6.r // bias light intensity
mad r4.rgb,c0.b,r4,-c0.g // expand second back normal
dp3_sat r4.r,t2,r4 // calculate front light intensity
add_sat r4.r,c0.r,r4.r // bias light intensity
mov r2.r,r4.a // move second back scalar value
mov r2.g,r1.a // move back scalar value
texld r2,r2,s1 // pre-integration lookup
mul r2.rgb,r2,r2.a // post-multiply alpha
add r2.a,c0.g,-r2.a // compute transparency
mul r2.rgb,r2,r4.r // multiply emission with intensity
mov r5.r,r6.a // move central scalar value
mov r5.g,r4.a // move second back scalar value
texld r5,r5,s1 // pre-integration lookup
mul r5.rgb,r5,r5.a // post-multiply alpha
add r5.a,c0.g,-r5.a // compute transparency
mul r5.rgb,r5,r6.r // multiply emission with intensity
mad r2.rgb,r2,r5.a,r5 // blend operation (1st)
mul r2.a,r2.a,r5.a // accumulate alpha
mov r5.r,r3.a // move second front value
mov r5.g,r6.a // move central scalar value
texld r5,r5,s1 // pre-integration lookup
mul r5.rgb,r5,r5.a // post-multiply alpha
add r5.a,c0.g,-r5.a // compute transparency
mul r5.rgb,r5,r3.r // multiply emission with intensity
mad r2.rgb,r2,r5.a,r5 // blend operation (2nd)
mul r2.a,r2.a,r5.a // accumulate alpha
mov r5.r,r0.a // move front scalar value
mov r5.g,r3.a // move second front scalar value
texld r5,r5,s1 // pre-integration lookup
mul r5.rgb,r5,r5.a // post-multiply alpha
add r5.a,c0.g,-r5.a // compute transparency
mul r5.rgb,r5,r0.r // multiply emission with intensity
mad r2.rgb,r2,r5.a,r5 // blend operation (3rd)
mul r2.a,r2.a,r5.a // accumulate alpha
add r2.a,c0.g,-r2.a // compute opacity
mov oC0,r2 // move to output register

8.4. Ray Casting: Ray Setup and First Integration Step

ps_2_0 // ps 2.0
def c0,0.0,2.0,63.75,1.0 // constant definitions
def c1,1.0,0.0,0.333,0.5 // (c2,c3) is the bounding box
dcl t0.xyz // first intersection point with volume
dcl t1.xyz // ray direction (not normalized)
dcl t2.xyz // scaling of texture coordinates
dcl t3.xyz // direction to light source
dcl_volume s0 // 3D volume
dcl_volume s1 // 3D table holding sampling distances
dcl_volume s2 // 3D pre-integration table
texld r2,t0,s0 // sample volume at first intersection
texld r5,t0,s1 // get distance to next sampling point
nrm r0.xyz,t1 // normalize ray direction..
mul r0.xyz,r0,t2 // ..and multiply with scaling factors
add r4.xyz,c2,-t0 // calculate signed distances..
add r3.xyz,c3,-t0 // ..to the bounding box
rcp r6.x,r0.x // calculate reciprocal..
rcp r6.y,r0.y // ..of each component..
rcp r6.z,r0.z // ..of ray direction
mul r3.xyz,r3,r6 // calculate distance to bounding box..
mul r4.xyz,r4,r6 // ..in ray direction
max r6.xyz,r3,r4 // get closest..
min r4.x,r6.x,r6.y // ..non-negative..
min r1.y,r4.x,r6.z // ..intersection point
mov r1.xzw,c0.x // store intersection 4 ray termination
mad r1.xz,r5.x,c1,r1.x // compute new sampling position

min r1.x,r1.x,r1.y // clamp to volume boundary
mad r3.xyz,r1.x,r0,t0 // calculate second sampling point..
texld r4,r3,s0 // ..and sample volume at this position
mad r2.xyz,r2,c0.y,-c0.w // extract gradient
nrm r8.xyz,r2 // normalize gradient
add r6.w,r1.x,-r1.z // get interval length of current step
lrp r6.xy,c1,r2.w,r4.w // setup texcoords 4 pre-integration..
mad r6.z,r6.w,c1.z,-c1.z // ..including ray segment length l
texld r7,r6,s2 // pre-integration lookup
dp3_sat r8.w,r8,t3 // calculate light intensity
mul r6.x,c0.z,r6.w // change opacity to correctly..
add r7.a,c0.w,-r7.a // ..represent the ray segment length..
pow r10.a,r7.a,r6.x // ..which includes raising it..
add r7.a,c0.w,-r10.a // ..to the power of l
mul r7.rgb,c1.w,r7 // bias color 4 lighting
mad r7.rgb,r8.w,r7,r7 // multiply emission with intensity
mul r7.rgb,r7,r7.a // post-multiply alpha
mov r0,r7.b // split color 4 floating point output..
mov r0.g,r7.a // ..into two render targets
mov oC0,r7 // output color (RG)
mov oC1,r0 // output color (BA)
mov oC2,r1 // output ray parameter

8.5. Ray Casting: Ray Termination

ps_2_0 // ps 2.0
def c0,-1.0,-1.0,0.0,0.0 // constant definitions
def c1,0.996,0.0,0.0,0.0 // threshold equals 1/256
dcl t4.xyzw // position of pixel in screen space
dcl_2d s3 // previous ping-pong buffers holding..
dcl_2d s4 // ..floating point colors
dcl_2d s5 // buffer containing sample positions
texldp r1,t4,s5 // get sampling position..
mov r1.zw,c0.z // ..and clear unused part
texldp r8,t4,s4 // get opacity
add r0,r1.x,-r1.y // calc distance to volume boundary
cmp r1,r0,c0,r1 // check if distance equals 0
add r0,c1.x,-r8.g // compare opacity against threshold..
cmp r1,r0,r1,c0 // ..4 early ray termination
mov r0,-r1 // leave shader if the ray..
texkill r0 // ..is not being terminated
texldp r7,t4,s3 // get remaining parts of color
mov oC0,r7 // output floating point color into..
mov oC1,r8 // ..alternate ping-pong buffers

8.6. Ray Casting: One Additional Integration Step

ps_2_0 // ps 2.0
def c0,0.0,2.0,63.75,1.0 // constant definitions
def c1,1.0,0.0,0.333,0.5 // (c2,c3) is the bounding box
dcl t0.xyz // first intersection point with volume
dcl t1.xyz // ray direction (not normalized)
dcl t2.xyz // scaling of texture coordinates
dcl t3.xyz // direction to light source
dcl t4.xyzw // position of pixel in screen space
dcl_volume s0 // 3D volume
dcl_volume s1 // 3D table holding sampling distances
dcl_volume s2 // 3D pre-integration table
dcl_2d s3 // previous ping-pong buffers holding..
dcl_2d s4 // ..floating point colors
dcl_2d s5 // buffer containing sample positions
texldp r1,t4,s5 // get sampling position
texldp r7,t4,s3 // get color from two..
texldp r8,t4,s4 // ..floating point render targets
mov r7.z,r8.x // combine the color channels of..
mov r7.w,r8.y // ..the two render targets
nrm r0.xyz,t1 // normalize ray direction..
mul r0.xyz,r0,t2 // ..and multiply with scaling factors
mad r3.xyz,r1.x,r0,t0 // calculate first sampling point
texld r2,r3,s0 // sample volume at first sampling point
texld r5,r3,s1 // get distance to next sampling point
mad r1.xz,r5.x,c1,r1.x // compute new sampling position
min r1.x,r1.x,r1.y // clamp to volume boundary
mad r3.xyz,r1.x,r0,t0 // calculate second sampling point..
texld r4,r3,s0 // ..and sample volume at this position
mad r2.xyz,r2,c0.y,-c0.w // extract gradient
nrm r8.xyz,r2 // normalize gradient
add r6.w,r1.x,-r1.z // get interval length of current step
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lrp r6.xy,c1,r2.w,r4.w // setup texcoords 4 pre-integration..
mad r6.z,r6.w,c1.z,-c1.z // ..including ray segment length l
texld r9,r6,s2 // pre-integration lookup
dp3_sat r8.w,r8,t3 // calculate light intensity
mul r6.x,c0.z,r6.w // change opacity to correctly..
add r9.a,c0.w,-r9.a // ..represent the ray segment length..
pow r10.a,r9.a,r6.x // ..which includes raising it..
add r9.a,c0.w,-r10.a // ..to the power of l
mul r9.rgb,c1.w,r9 // bias color 4 lighting
mad r9.rgb,r8.w,r9,r9 // multiply emission with intensity
mul r9.rgb,r9,r9.a // post-multiply alpha
add r8.a,c0.w,-r7.a // blend new color..
mad r7,r9,r8.a,r7 // ..with the old one
mov r0,r7.b // split color 4 floating point output..
mov r0.g,r7.a // ..into two render targets
mov oC0,r7 // output color (RG)
mov oC1,r0 // output color (BA)
mov oC2,r1 // output ray position
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Top left: Naive volume clipping approach (rendered Bucky Ball shows slicing artifacts). Top right: Accurate volume clipping
method. Bottom: Hardware-accelerated ray casting (Bonsai rendered with ATI Radeon 9700).
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