
NDVI-BASED VEGETATION RENDERING

Stefan Roettger
Computer Graphics Group, University of Erlangen

www.stereofx.org, stefan@stereofx.org

plain terrain with NDVI-based vegetation

ABSTRACT
The area of terrain rendering has seen great improvements
both in rendering performance and image quality. The lat-
est terrain rendering algorithms efficiently utilize the capa-
bilities of actual programmable graphics hardware in order
to achieve real-time visualizations of large terrain models.
Despite these advances, a remotely sensed dataset will not
look realistic unless the terrain model also accounts for the
vegetation. We present an extension of the C-LOD tech-
nique that is able to enrich large GIS scenes with forestal
detail by rendering trees and bushes in a view-dependent
way. The placement of the trees is derived automatically
from real NDVI data. We also present a NDVI based
texture splatting method in order to render the underlying
grass layer in a realistic way.

KEYWORDS: Terrain Rendering, Continuous Level of
Detail, Vegetation Rendering, Texture Splatting.

1 Introduction and Previous Work

Terrain rendering has a long tradition now. Ten years back
the publication of the so called continuous level of detail
(C-LOD) method [12, 8] enabled the display of very large
landscapes. These approaches use a very fine grained tri-
angulation that is driven by the screen space error of the
coarsened mesh. This means that objects that are far away
from the viewer are represented at a lower level of detail
than objects that are nearby.

C-LOD methods are typically limited by the speed of
the CPU, so that recent advances [4, 2, 13] try to utilize
the performance of programmable computer graphics hard-
ware. This led to algorithms that nowadays easily achieve
triangle counts of several tens of millions triangles per sec-
ond.

Nevertheless, in order to achieve a high degree of re-
alism plain terrain rendering is not sufficient. Man-made
objects and the various types of vegetation such as grass,
bushes and trees have to be considered as well (compare ti-

tle figure, which shows the “Hetzlas” in Mid Frankonia). A
wide variety of methods exists that are able to model virtual
landscapes [9] and plant ecosystems [7, 3] in a very realis-
tic way. Due to the huge amount of detail of an ecosys-
tem it is very difficult to apply these techniques to the large
scenes that are visible in a typical GIS scenario. Several
approaches have been made to increase the rendering per-
formance: point based [6], volume rendering based [5] and
billboard based [1].

2 NDVI Measurement

While the described approaches try to model vegetation in
a procedural or stochastical way few approaches are known
that can display the vegetation of a real GIS scene located
somewhere on earth. Partly this was due to the restricted
availability of data that describes the distribution of vegeta-
tion in a specific area (compare [19]). With the availability
of GLCF data [10] Landsat satellite imagery with a world-
wide resolution of up to 30 meters is available for free.

The latest Landsat ETM+ satellites (Enhanced The-
matic Mapper) provide spectral bands 1-8 ranging from
visible to infrared wave lengths. The Landsat channels
3 (red) and 4 (near infrared) can be used to compute the
so called NDVI (the Normalized Difference Vegetation In-
dex). Living vegetation absorbs light in the frequency
range of band 3 but shows almost no absorption in the range
of band 4. So from the intensity difference of the two bands
we can easily measure the activity of vegetationANDV I

using the following standardized formula:

ANDV I =
I4 − I3

I4 + I3

Vegetation usually has NDVI values in the range from 0.1
to 0.7. Higher index values are associated with higher lev-
els of healthy vegetation cover, whereas clouds and snow
will cause index values near zero, making it appear that the
vegetation is less green (see Figure 1).



Figure 1. Left: Landsat channels 1-3. Center: NDVI (chan-
nel 4/3). Right: Corine Land Cover Classification.

Commercial sources also provide land cover maps
and vegetation indices, but these are usually hand-
processed NDVI or related data. Due to the intensive man-
ual work, on the one hand the correspondence with the real
vegetation is usually good but on the other hand the reso-
lution is fairly low. Therefore, important details like high-
ways cannot be captured which is unacceptable for inter-
active walk-throughs (compare Corine Land Cover Clas-
sification with 100m base resolution on the right side of
Figure 1).

In the following we describe a novel method that uses
the original hi-res NDVI data to enrich real scenes with the
corresponding real vegetation.

3 Large Scale Forest Rendering

The NDVI data is available from the GLCF as tiled grey
scale images that cover a geo-referenced area. Together
with the DEMs (digital elevation maps) from the SRTM
(Space Shuttle Radar Mission) and the visible channels 1-3
of the Landsat data we effectively have a high resolution
landscape and vegetation description of any particular area
in the world.

Since the data is overlapping each other, the first step
to visualize the scene is to resample the data. We use the
libMini [11] terrain rendering library which is based on the
C-LOD algorithm described in [15]. It supports paging of
large scenes in an efficient way. For this to work, the scene
is broken up into regular tiles. For each tile a LOD pyramid
is constructed, so that the library can page in the visible
LODs and page out those which have become invisible.

In each frame the library processes a subset of all vis-
ible tiles and updates the triangulation for these tiles de-
pending on the actual point of view. The updated tiles are
stored in one of two render caches. After a complete update
of all tiles one cache contains the mesh of the entire scene
and is used display the scene in subsequent frames while
the other cache is silently updated.

By switching forth and back between the two render
caches the library does not need to perform a complete up-
date in every frame which reduces the CPU load dramat-
ically. Also, the usage of a double buffered render cache
enables us to store the geometry in a vertex buffer so that
the graphics hardware is able to process the triangles very
efficiently. Additionaly, the render cache has the advantage

Figure 2. Prism stacked on a base triangle with one bush
placed randomly inside the prism volume.

that it can be easily extended for the purpose of large scale
forest rendering as described in the following:

The C-LOD algorithm uses a height field for the com-
pact storage of terrain data. From this data the mesh is gen-
erated in a view-dependent way and stored tile by tile in
the render cache. We now introduce a second height field
which represents the height of the associated vegetation.
From this vegetation height field we generate a volumet-
ric description of the space occupied by the vegetation in
the following way: For each triangle that is output by the
terrain renderer a prism is stacked on top of these base tri-
angles (see Figure 2). The height of the 3 vertical edges
of each prism is taken from the vegetation height field, so
that the set of prisms is a view-dependent volumetric de-
scription of the vegetation on the landscape. Since the base
triangles are coupled with the stacked prisms, the screen
space error which drives the triangulation must be modi-
fied to be the maximum of the screen space error for both
the height field and the vegetation field (compare [16]).

We assume that there is a direct relationship of the
plants height and the intensity of the vegetation, that is the
NDVI values. This is reasonable, because a higher index
indicates a higher bio mass and a higher mass indicates
larger plants on the average. Thus, the vegetation height
field can be derived directly from NDVI data by applying
a monotone scalar mapping. The mapping could be mea-
sured manually by gathering field samples. In our case we
assume the mapping to be linear with a maximum user-
definable plant heightHplant (see also Figure 3).

As the next step we take each prism and place trees
and bushes in it in a pseudo random fashion. The main two
parameters for driving the seeding process are the prism
height and the target density of the plants. Every triangle
that is output by the terrain renderer is recursively subdi-
vided into 4 sub-triangles until the triangle size is below
the target density. Then each sub-triangle receives one
plant where the type and height of the plants is determined
stochastically by the prism height. The higher the prism,
the more likely it is that a tree is placed in it. The lower the



ANDVI

HPlant

Grass

Bushes

Trees

Figure 3. Mapping NDVI values to plant height.

prism, the more likely it is that a bush is placed in it in or-
der to reflect the lower bio mass given by the corresponding
NDVI value. The plants are positioned in a deterministic
but random way. We use a pseudo random number gener-
ator which is seeded by the horizontal position of the base
triangles in order to stochastically vary the actual position
of each plant. In our case the placement also depends on a
particular height threshold. Below this threshold no plants
are generated and the prism is simply culled. Additionally,
the placement density decreases with the viewing distance
in order to keep the total number of generated plants within
a manageable limit.

All the generated plants are stored in a tree render
cache which is also double buffered. Currently the plants
are rendered as billboards in each frame. Due to the view-
dependency of the tree generating process the number of
visible trees in a scene is reduced dramatically. At the
same time the forest is still stretching out very far, since
the render cache allows to render a large number of trees
in real-time. Since the cache is updated permanently, the
placement of the plants is also repeatedly updated. As a re-
sult, the height of the plants corresponds with the elevation
of the terrain even though the elevation may change over
time due to a changing view point.

The title figure shows the benefit of enriching a scene
with vegetation in the described way (see Figure 4 for the
applies set of trees and bushes). The first advantage is that
the scene and especially the horizon looks much more like
what one would expect in reality. The second advantage is
that the viewing experience is much more realistic, because
the skirts of a forest completely obscure all details behind
it. A practical example for this case is a tour on the highway
through a forest, where basically only the highway and the
trees on its side are visible.

4 Rendering the Grass Layer

High to medium values of the NDVI usually correspond
to trees or bushes, respectively. These can be displayed
efficiently using our described billboard approach. Low

Figure 4. Tree and bush billboards.

Figure 5. Grass textures.

NDVI values correspond to either very sparse vegetation
or grass. For the display of meadows with a large extent
billboards are not suitable, so we use an approach which is
commonly known astexture splatting. In general, texture
splatting means that from a set of appearance parameters
a selection of tilable patterns is blended together and then
splat onto the surface (see also [17]).

As mentioned previously, below a certain height or
NDVI threshold we do not render plants. Instead, this lower
range of NDVI values is mapped to a grass classification
parameterg (see also Figure 3). Low values ofg corre-
spond to stony areas whereas high values correspond to a
healthy meadow.

For this range of different grass types we use a set
of geotypical tilable texture patterns (see Figure 5) that are
stored in a 3D texture stack. When processing the prisms
we check whether or not plants need to be placed. In the
case that no plants are generated we render an additional
grass layer by performing a 3D texture lookup with the first
two texture coordinates being calculated from the vertices’
position on the plane andg being the third texture coor-
dinate along the texture stack (so the logical term for this
texturing method is3D texture splatting). In order to make
the textures appear more natural we also perturbg with a
2D Perlin Noise texture [14].

Without the use of mip-mapping for the 3D grass tex-
ture stack the described approach is straight-forward. How-
ever, since our scene is large mipmapping is mandatory.
But we cannot use the standard mipmapping approach that
is built into OpenGL. This is due to the fact that standard
3D mipmapping requires the mip map levels to be halved
alongeach edge of the texture volume. This assumption is
not fulfilled because the number of stacked textures needs
to be kept constant and cannot be halved from one mip-map
level to the next one.

As a consequence we implemented a pixel shader
which performs mipmapping by hand. For then possible
mip-map levels of the 3D texture we blow up all levels to
the size of level0 and store them stacked above each other
in a single 3D texture. Then the pixel shader only has to



determine the actual level of detail and perform a lookup in
the corresponding 3D texture subset.

It would be a waste of texture memory to store alln

levels of detail. At a certain distance threshold the origi-
nal texture ortho-photos of each tile are detailed enough to
replace the 3D textured surface. The LOD number that cor-
responds to this threshold usually lies in the range from 3-5,
so that we only need to store the first 4 LODs for example.
So, in comparison to the application of plain 3D textures
the usage of 3D-mipmapping for the texture splats requires
four times the amount of texture memory. The texture stack
shown in Figure 5, for example, consumes 24MB.

5 Results and Future Work

The scene displayed in Figure 6 contains a total of approx-
imately 10 million trees. The described C-LOD method
reduces this to an amount of roughly 100.000 visible trees
depending on the point of view. On an AMD Athlon 1.8
GHz PC with an NVIDIA GeForce 5800 graphics acceler-
ator the frame rate for the entire scene is about 30 frames
per second with an effective number of 10 million vertices
per second on the average and about 15 million vertices
peak performance. These results show the efficiency of our
caching system.

Another possible option is to accelerate the display of
the cached geometry by using impostors [18] and/or bill-
board clouds [1] for distant trees. Additionally, a geomet-
rical plant representation [6] can be used to improve the
appearance of nearby trees.

In the future we plan to improve the plant placement
scheme by not only specifying one additional vegetation
height field but in fact several of them. For example one
vegetation field for coniferous and one for deciduous tree
height would enable us to model the forest type exactly.
The proposed model is also open for a wide variety of other
GIS parameters that are used in practice such as average
rainfall or soil classifications.

6 Conclusion

We described an approach that is able to use satellite NDVI
data for the display of real-world forest scenes. We ren-
dered the large-scale vegetation data at real-time by apply-
ing a view-dependent C-LOD algorithm. Besides the use
case demonstared in the paper, we would like to emphasize
that our approach is able to serve as a general frame work
for a wide variety of other GIS exploration tasks.

References

[1] S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and
O. Deussen. Realistic real-time rendering of landscapes
using billboard clouds. InEUROGRAPHICS 2005, pages
507–516, 2005.

[2] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, and F. Pon-
chio. Planet-Sized Batched Dynamic Adaptive Meshes (P-
BDAM). In Proc. Visualization ’03, pages 147–155. IEEE,
2003.

[3] M. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles
for texture and image generation. InSIGGRAPH 2003,
pages 287–294, 2003.

[4] Willem H. de Boer. Fast Terrain Rendering Using Geomet-
rical Mipmapping.E-mersion Project, 2000.

[5] P. Decaudin and F. Neyret. Rendering forest scenes in real-
time. InEurographics Symposium on Rendering, pages 93–
102, 2004.

[6] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis.
Interactive visualization of complex plant exosystems. In
IEEE Visualization 2002, pages 219–226, 2002.

[7] O. Deussen, P. Hanrahan, B. Lintermann, R. Mech,
M. Pharr, and P. Prusinkiewicz. Realistic modelling and
rendering of plant ecosystems. InSIGGRAPH 1998, pages
275–286, 1998.

[8] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, Ch.
Aldrich, and M. B. Mineev-Weinstein. ROAMing Terrain:
Real-Time Optimally Adapting Meshes. InProc. Visualiza-
tion ’97, pages 81–88. IEEE, 1997.

[9] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S. Wor-
ley. Texturing & Modeling, A Procedural Approach. AP Pro-
fessional, second edition, isbn 0-12-228730-4 edition, 1998.

[10] GLCF. The Global Landcover Facility.
http://glcf.umiacs.umd.edu, 2005.

[11] libMini. A Real-Time Terrain Rendering Engine.
http://stereofx.org/#terrain, 2005.

[12] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges,
N. Faust, and G. Turner. Real-Time, Continuous Level of
Detail Rendering of Height Fields. InProc. SIGGRAPH
’96, pages 109–118. ACM, 1996.

[13] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain
rendering using nested regular grids. InSIGGRAPH 2004,
pages 769–776, 2004.

[14] Ken Perlin. An Image Synthesizer.Computer Graphics
(Proc. SIGGRAPH ’85), 19(3):287–296, 1985.

[15] S. Roettger, W. Heidrich, Ph. Slusallek, and H.-P. Sei-
del. Real-Time Generation of Continuous Levels of De-
tail for Height Fields. InProc. WSCG ’98, pages 315–322.
EG/IFIP, 1998.

[16] Stefan Roettger and Thomas Ertl. Cell Projection of Convex
Polyhedra. InProc. Volume Graphics ’03, pages 103–107,
2003.

[17] Stefan Roettger and Ingo Frick. The Terrain Rendering
Pipeline. InProc. EWV ’02, pages 195–199. OCG Schriften-
reihe, R. Oldenburg, Vienna, 2002.

[18] G. Schaufler. Per-Object Image Warping with Layered Im-
postors. InProc. 9th Workshop on Rendering ’98, pages
145–156. Eurographics, 1998.

[19] M. Suter and D. N̈uesch. Automated generation of visual
simulation databases using remote sensing and GIS. InProc.
Visualization ’95, pages 135–142. IEEE Computer Society
Press, 1995.



Figure 6. Display of forest scarps at the ”Hetzlas” and a closeup of the grass layer.


